cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161077 Number of partitions of n into primes or 1 where every part appears at least 2 times.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 2, 5, 5, 8, 6, 12, 10, 16, 16, 22, 21, 31, 30, 40, 42, 53, 55, 71, 73, 90, 96, 116, 123, 149, 157, 186, 200, 234, 250, 292, 312, 360, 388, 443, 476, 543, 584, 660, 712, 800, 862, 967, 1041, 1160, 1252, 1390, 1497, 1659, 1786, 1970, 2124, 2336, 2513, 2760
Offset: 1

Views

Author

R. H. Hardin, Jun 02 2009

Keywords

Examples

			a(8)=5 because we have 3311, 2222, 22211, 221111, and 1^8. - _Emeric Deutsch_, Jun 27 2009
		

Programs

  • Maple
    g := -1+(1+x^2/(1-x))*(product(1+x^(2*ithprime(j))/(1-x^ithprime(j)), j = 1 .. 20)): gser := series(g, x = 0, 70): seq(coeff(gser, x, n), n = 1 .. 60); # Emeric Deutsch, Jun 27 2009
  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[-1 + (1 + x^2/(1-x)) * Product[1 + x^(2*Prime[k]) / (1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 28 2020 *)

Formula

G.f.: -1+(1+x^2/(1-x))*Product_{j>=1} ( 1+x^(2*p(j))/(1-x^(p(j))) ), where p(j) is the j-th prime. - Emeric Deutsch, Jun 27 2009

Extensions

Definition edited to "primes or 1" by R. H. Hardin, Jun 22 2009