cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161090 Number of partitions of n into squares where every part appears at least 2 times.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 5, 4, 6, 5, 6, 6, 7, 6, 8, 8, 9, 9, 11, 10, 13, 11, 14, 14, 16, 15, 18, 18, 20, 19, 22, 22, 25, 24, 27, 28, 32, 29, 36, 34, 39, 38, 42, 42, 47, 45, 51, 51, 56, 55, 62, 61, 68, 66, 75, 73, 82, 79, 88, 88, 96, 93, 104, 105, 112, 113, 122, 123
Offset: 1

Views

Author

R. H. Hardin, Jun 02 2009

Keywords

Examples

			a(12)=3 because we have 444, 441111, and 1^(12). - _Emeric Deutsch_, Jun 21 2009
		

Crossrefs

Programs

  • Maple
    g := -1+product(1+x^(2*j^2)/(1-x^(j^2)), j = 1 .. 10): gser := series(g, x = 0, 90): seq(coeff(gser, x, n), n = 1 .. 79); # Emeric Deutsch, Jun 21 2009
  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[-1 + Product[(1 + x^(2*k^2)/(1-x^(k^2))), {k, 1, Sqrt[nmax] + 1}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 15 2025 *)
    nmax = 100; Rest[CoefficientList[Series[-1 + Product[(1 + x^(3*k^2))/(1 - x^(2*k^2)), {k, 1, Sqrt[nmax/2] + 1}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 15 2025 *)

Formula

G.f.: -1 + Product_{j>=1} (1 + x^(2*j^2)/(1-x^(j^2))). - Emeric Deutsch, Jun 21 2009
From Vaclav Kotesovec, Jun 15 2025: (Start)
G.f.: -1 + Product_{k>=1} (1 + x^(3*k^2)) / (1 - x^(2*k^2)).
a(n) ~ ((2 - sqrt(2) + sqrt(6))*zeta(3/2))^(2/3) * exp(Pi^(1/3)*(3*(2 - sqrt(2) + sqrt(6))*zeta(3/2))^(2/3)*n^(1/3)/4) / (8 * 3^(5/6) * Pi^(7/6) * n^(7/6)). (End)