This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161121 #15 Feb 01 2023 07:07:13 %S A161121 1,1,2,0,1,6,0,9,24,0,72,0,9,120,0,600,0,225,720,0,5400,0,4050,0,225, %T A161121 5040,0,52920,0,66150,0,11025,40320,0,564480,0,1058400,0,352800,0, %U A161121 11025,362880,0,6531840,0,17146080,0,9525600,0,893025,3628800,0,81648000,0 %N A161121 Triangle read by rows: T(n,k) is the number of fixed-point-free involutions of {1,2,...,2n} having k cycles with entries of the same parity (0 <= k <= 2*floor(n/2)). %C A161121 Row n contains 1 + 2*floor(n/2) terms. %C A161121 Sum of row n = (2n-1)!! (A001147). %C A161121 a(n,0) = n! (A000142). %C A161121 a(2n,2n) = A001818(n). %C A161121 Sum_{k>=0} k*T(n,k) = n*(n-1)*(2n-3)!! = A161122(n). %H A161121 Robert Israel, <a href="/A161121/b161121.txt">Table of n, a(n) for n = 0..10081</a> (rows 0 to 141, flattened) %F A161121 T(n,k) = (n-k)!*binomial(n,k)^2*((k-1)!!)^2 if k is even; T(n,k) = 0 if k is odd. %e A161121 T(3,2)=9 because we have (12)(35)(46), (14)(26)(35), (16)(24)(35), (23)(15)(46), (25)(13)(46), (34)(15)(26), (36)(15)(24), (45)(13)(26), (56)(13)(24). %e A161121 Triangle starts: %e A161121 1; %e A161121 1; %e A161121 2, 0, 1; %e A161121 6, 0, 9; %e A161121 24, 0, 72, 0, 9; %e A161121 120, 0, 600, 0, 225; %p A161121 T := proc (n, k) if n < k then 0 elif `mod`(k, 2) = 0 then binomial(n, k)^2*factorial(n-k)*(product(2*j-1, j = 1 .. (1/2)*k))^2 else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. 2*floor((1/2)*n)) end do; # yields sequence in triangular form %t A161121 T[n_, k_] := If[EvenQ[k], (n-k)! Binomial[n, k]^2 ((k-1)!!)^2, 0]; %t A161121 Table[T[n, k], {n, 0, 10}, {k, 0, 2 Quotient[n, 2]}] // Flatten (* _Jean-François Alcover_, Feb 01 2023 *) %Y A161121 Cf. A000142, A001147, A001818, A161119, A161120, A161122. %K A161121 nonn,tabf %O A161121 0,3 %A A161121 _Emeric Deutsch_, Jun 02 2009