A161125 Number of descents in all involutions of {1,2,...,n}.
0, 0, 1, 4, 15, 52, 190, 696, 2674, 10480, 42732, 178480, 770836, 3411024, 15538120, 72446752, 346550520, 1694394496, 8477167504, 43287312960, 225707308912, 1199526928960, 6498288708576, 35836282708864, 201160191642400, 1148165325126912, 6662315102507200, 39268797697682176
Offset: 0
Keywords
Examples
a(3)=4 because in the involutions 123, 132, 213, and 321 we have 0 + 1 + 1 + 2 descents.
References
- R. P. Stanley, Enumerative Combinatorics Vol 2., Lemma 7.19.6, p. 361
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- J. Désarménien and D. Foata, Fonctions symétriques et séries hypergéométriques basiques multivariées, Bull. Soc. Math. France, 113, 1985, 3-22.
- I. M. Gessel and C. Reutenauer, Counting permutations with given cycle structure and descent set, J. Combin. Theory, Ser. A, 64, 1993, 189-215.
- V. J. W. Guo and J. Zeng, The Eulerian distribution on involutions is indeed unimodal, J. Combin. Theory, Ser. A, 113, 2006, 1061-1071.
Programs
-
Maple
a[0] := 0: a[1] := 0: a[2] := 1: a[3] := 4: for n from 4 to 27 do a[n] := (n-1)*(a[n-1]/(n-2)+(n-1)*a[n-2]/(n-3)) end do: seq(a[n], n = 0 .. 27); # end of program g := (1-(1-z-z^2)*exp(z+(1/2)*z^2))*1/2: gser := series(g, z = 0, 30): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 27); # end of program
-
Mathematica
CoefficientList[Series[(1-(1-z-z^2)*Exp[z+(1/2)*z^2])/2,{z,0,24}],z] Range[0,24]!; (* Emeric Deutsch, Jun 09 2009 *) descentset[t_?TableauQ]:=Sort[Cases[t,i_Integer /; Position[t,i+1][[1,1]] > Position[t,i][[1,1]], {2}]]; Table[Tr[Length[descentset[#]]& /@Tableaux[n]], {n,1,12}] (* Wouter Meeussen, Aug 04 2013 *)
-
PARI
x='x+O('x^66); concat([0,0],Vec(serlaplace((1/2)*(1-(1-x-x^2)*exp(x+x^2/2))))) \\ Joerg Arndt, Aug 04 2013
Comments