cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161125 Number of descents in all involutions of {1,2,...,n}.

Original entry on oeis.org

0, 0, 1, 4, 15, 52, 190, 696, 2674, 10480, 42732, 178480, 770836, 3411024, 15538120, 72446752, 346550520, 1694394496, 8477167504, 43287312960, 225707308912, 1199526928960, 6498288708576, 35836282708864, 201160191642400, 1148165325126912, 6662315102507200, 39268797697682176
Offset: 0

Views

Author

Emeric Deutsch, Jun 09 2009

Keywords

Comments

Also total number of descents in all tableaux of size n (see Stanley ref.).
A descent in a standard Young tableau is a entry i such that i+1 lies strictly below and weakly left of i. [Joerg Arndt, Feb 18 2014]

Examples

			a(3)=4 because in the involutions 123, 132, 213, and 321 we have 0 + 1 + 1 + 2 descents.
		

References

  • R. P. Stanley, Enumerative Combinatorics Vol 2., Lemma 7.19.6, p. 361

Crossrefs

Programs

  • Maple
    a[0] := 0: a[1] := 0: a[2] := 1: a[3] := 4: for n from 4 to 27 do a[n] := (n-1)*(a[n-1]/(n-2)+(n-1)*a[n-2]/(n-3)) end do: seq(a[n], n = 0 .. 27); # end of program
    g := (1-(1-z-z^2)*exp(z+(1/2)*z^2))*1/2: gser := series(g, z = 0, 30): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 27); # end of program
  • Mathematica
    CoefficientList[Series[(1-(1-z-z^2)*Exp[z+(1/2)*z^2])/2,{z,0,24}],z] Range[0,24]!; (* Emeric Deutsch, Jun 09 2009 *)
    descentset[t_?TableauQ]:=Sort[Cases[t,i_Integer /; Position[t,i+1][[1,1]] > Position[t,i][[1,1]], {2}]]; Table[Tr[Length[descentset[#]]& /@Tableaux[n]], {n,1,12}] (* Wouter Meeussen, Aug 04 2013 *)
  • PARI
    x='x+O('x^66);  concat([0,0],Vec(serlaplace((1/2)*(1-(1-x-x^2)*exp(x+x^2/2))))) \\ Joerg Arndt, Aug 04 2013

Formula

a(n) = (n-1)*A000085(n)/2.
a(n) = Sum(k*A161126(n,k), k=0..n-1).
Rec. rel.: a(n)/(n-1) = a(n-1)/(n-2) + (n-1)*a(n-2)/(n-3) for n>=4 (see 1st Maple program).
E.g.f.: (1/2)*(1 - (1 - z - z^2)*exp(z + z^2/2)).