cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161126 Triangle read by rows: T(n,k) is the number of involutions of {1,2,...,n} having k descents (n >= 1; 0 <= k < n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 12, 6, 1, 1, 9, 28, 28, 9, 1, 1, 12, 57, 92, 57, 12, 1, 1, 16, 105, 260, 260, 105, 16, 1, 1, 20, 179, 630, 960, 630, 179, 20, 1, 1, 25, 289, 1397, 3036, 3036, 1397, 289, 25, 1, 1, 30, 444, 2836, 8471, 12132, 8471, 2836, 444, 30, 1, 1, 36
Offset: 1

Views

Author

Emeric Deutsch, Jun 09 2009

Keywords

Comments

Also number of ballot sequences of length n with k ascents; also number of standard Young tableaux with n cells such that there are k pairs of cells (v,v+1) with v+1 lying in a row below v. - Joerg Arndt, Feb 21 2014
See the Brualdi/Ma reference for the connection to A138177. - Joerg Arndt, Nov 02 2014

Examples

			T(4,2)=4 because we have 1432, 2143, 4231, and 3214.
Triangle starts:
  01: 1
  02: 1,  1
  03: 1,  2,   1
  04: 1,  4,   4,    1
  05: 1,  6,  12,    6,     1
  06: 1,  9,  28,   28,     9,      1
  07: 1, 12,  57,   92,    57,     12,      1
  08: 1, 16, 105,  260,   260,    105,     16,      1
  09: 1, 20, 179,  630,   960,    630,    179,     20,     1
  10: 1, 25, 289, 1397,  3036,   3036,   1397,    289,    25,    1
  11: 1, 30, 444, 2836,  8471,  12132,   8471,   2836,   444,   30,   1
  12: 1, 36, 659, 5434, 21529,  42417,  42417,  21529,  5434,  659,  36,  1
  13: 1, 42, 945, 9828, 50423, 132146, 181734, 132146, 50423, 9828, 945, 42, 1
  ...
		

Crossrefs

Programs

  • Maple
    P := proc (n) options operator, arrow: sort(simplify((1-t)^(n+1)*(sum(t^r*(sum(binomial((1/2)*r*(r+1)+k-1, k)*binomial(r+n-2*k, n-2*k), k = 0 .. floor((1/2)*n))), r = 0 .. infinity)))) end proc: for n to 12 do seq(coeff(P(n), t, j), j = 0 .. n-1) end do; # yields sequence in triangular form
    T := proc(n, k) option remember; if k < 0 then 0 elif n <= k then 0 elif n = 1 and k = 0 then 1 elif n = 2 and k = 0 then 1 elif n = 2 and k = 1 then 1 else ((k+1)*T(n-1, k)+(n-k)*T(n-1, k-1)+((k+1)^2+n-2)*T(n-2, k)+(2*k*(n-k-1)-n+3)*T(n-2, k-1)+((n-k)^2+n-2)*T(n-2, k-2))/n end if end proc: for n to 12 do seq(T(n, k), k = 0 .. n-1) end do; # yields sequence in triangular form
  • Mathematica
    P[n_, t_] := (1-t)^(n+1)*Sum[t^r*Binomial[n+r, n]*HypergeometricPFQ[{(1 - n)/2, -n/2, r(r+1)/2}, {(-n-r)/2, (1-n-r)/2}, 1], {r, 0, n}]; row[n_] := CoefficientList[P[n, t] + O[t]^n, t]; Table[row[n], {n, 1, 13}] // Flatten (* Jean-François Alcover, Dec 20 2016 *)

Formula

Sum_{k=1..n} T(n,k) = A000085(n) (row sums).
Sum_{k=0..n-1} k*T(n,k) = A161125(n).
Generating polynomial of row n is P(n,t) = (1-t)^(n+1) * Sum_{r>=0} t^r*Sum_{k=0..floor(n/2)} C(r(r+1)/2+k-1,k)*C(r+n-2k,n-2k) (see Eq. (2.5) in the Guo-Zeng paper; see first Maple program).
Recursive relation for n >= 3, k >= 0: n*T(n,k) = (k+1)*T(n-1,k) + (n-k)*T(n-1,k-1) + ((k+1)^2 + n-2)*T(n-2,k) + (2*k*(n-k-1)-n+3)*T(n-2,k-1) + ((n-k)^2+n-2)*T(n-2,k-2) (see Eq. (2.4) in the Guo-Zeng paper; see 2nd Maple program).