This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161132 #36 Jul 26 2022 16:13:05 %S A161132 1,1,1,4,14,78,426,3216,24024,229080,2170680,25022880,287250480, %T A161132 3884393520,52370755920,812752093440,12585067447680,220448163358080, %U A161132 3854801333416320,75225258805132800,1465957162768492800,31537353006189676800,677696237345719468800 %N A161132 Number of permutations of {1,2,...,n} that have no even fixed points. %H A161132 Alois P. Heinz, <a href="/A161132/b161132.txt">Table of n, a(n) for n = 0..450</a> %F A161132 a(n) = Sum_{j=0..ceiling(n/2)} d(n-j)*binomial(ceiling(n/2), j), where d(i) = A000166(i) are the derangement numbers. %F A161132 a(n) = Sum_{j=0..floor(n/2)} (-1)^j*binomial(floor(n/2),j)*(n-j)!. %F A161132 a(n) = A267383(n,ceiling(n/2)). - _Alois P. Heinz_, Jan 13 2016 %F A161132 a(n) ~ exp(-1/2) * n!. - _Vaclav Kotesovec_, Feb 18 2017 %F A161132 From _Mark van Hoeij_, Jul 15 2022: (Start) %F A161132 a(2*n) = A033815(n), %F A161132 a(2*n+1) = (A033815(n) + A033815(n+1)/(n+1))/2. (End) %F A161132 From _Peter Luschny_, Jul 15 2022: (Start) %F A161132 a(n) = n!*hypergeom([-floor(n/2)], [-n], -1). %F A161132 a(n) = A068106(n, ceiling(n/2)). (End) %F A161132 D-finite with recurrence +16*a(n) -24*a(n-1) +4*(-4*n^2+8*n+3)*a(n-2) +4*(2*n^2-10*n+9)*a(n-3) +2*(-4*n^2+22*n-31)*a(n-4) +2*(n-2)*(n-4)*a(n-5) -(n-4)*(n-5)*a(n-6)=0. - _R. J. Mathar_, Jul 26 2022 %e A161132 a(3)=4 because we have 132, 312, 213, and 231. %p A161132 d[0] := 1: for n to 25 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n) options operator, arrow: add(d[n-j]*binomial(ceil((1/2)*n), j), j = 0 .. ceil((1/2)*n)) end proc: seq(a(n), n = 0 .. 22); %p A161132 a := proc (n) options operator, arrow: add((-1)^j*binomial(floor((1/2)*n), j)*factorial(n-j), j = 0 .. floor((1/2)*n)) end proc; seq(a(n), n = 0 .. 22); # _Emeric Deutsch_, Jul 18 2009 %p A161132 a := n -> n!*hypergeom([-floor(n/2)], [-n], -1): %p A161132 seq(simplify(a(n)), n = 0..22); # _Peter Luschny_, Jul 15 2022 %t A161132 a[n_] := Sum[Subfactorial[n-j]*Binomial[Ceiling[n/2], j], {j, 0, Ceiling[ n/2]}]; Table[a[n], {n, 0, 22}] (* _Jean-François Alcover_, Feb 19 2017 *) %o A161132 (PARI)for (n=0, 30, print1(sum(j=0, floor(n/2), (-1)^j*binomial(floor(n/2),j)*(n - j)!),", ")) \\ _Indranil Ghosh_, Mar 08 2017 %o A161132 (Python) %o A161132 import math %o A161132 f=math.factorial %o A161132 def C(n, r): return f(n)/ f(r)/ f(n - r) %o A161132 def A161132(n): %o A161132 s=0 %o A161132 for j in range(0, (n/2)+1): %o A161132 s += (-1)**j*C(n/2, j)*f(n - j) %o A161132 return s # _Indranil Ghosh_, Mar 08 2017 %Y A161132 Cf. A000166, A033815, A068106, A161131, A267383. %K A161132 nonn %O A161132 0,4 %A A161132 _Emeric Deutsch_, Jul 18 2009