cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161139 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 16.

Original entry on oeis.org

1, 32767, 7174453, 536854528, 7629394531, 235085301451, 791260251657, 8795824586752, 34315186290957, 249992370597277, 417724816941565, 3851637578973184, 4265491084507563, 25927224666044919, 54736732481116543
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^15 such that the quotient group Z^15 / L is C_n. - Álvar Ibeas, Nov 26 2015

Crossrefs

Column 15 of A263950.

Programs

  • Maple
    A161139 := proc(n)
        add(numtheory[mobius](n/d)*d^15,d=numtheory[divisors](n)) ;
        %/numtheory[phi](n) ;
    end proc:
    for n from 1 to 5000 do
        printf("%d %d\n",n,A161139(n)) ;
    end do: # R. J. Mathar, Mar 15 2016
  • Mathematica
    A161139[n_] := DivisorSum[n, MoebiusMu[n/#]*#^(16 - 1)/EulerPhi[n] &]; Array[A161139,20] (* Enrique Pérez Herrero, Mar 02 2011 *)
    f[p_, e_] := p^(14*e - 14) * (p^15-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^14, d, if(ispower(d, 15), moebius(sqrtnint(d, 15))*sigma(n^14/d), 0))) \\ Altug Alkan, Nov 26 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^15 - 1)*f[i,1]^(14*f[i,2] - 14)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = J_15(n)/J_1(n), where J_15 and J_1(n) = A000010(n) are Jordan functions. - R. J. Mathar, Jul 12 2011
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(14e-14) * (p^15-1) / (p-1).
For squarefree n, a(n) = A000203(n^14). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^15, where c = (1/15) * Product_{p prime} (1 + (p^14-1)/((p-1)*p^15)) = 0.1295704557... .
Sum_{k>=1} 1/a(k) = zeta(14)*zeta(15) * Product_{p prime} (1 - 2/p^15 + 1/p^29) = 1.00003065989236... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^15). - Ridouane Oudra, Apr 02 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010