cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161157 a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 15.

Original entry on oeis.org

32767, 536821761, 78361756228, 4397643866112, 49998474112902, 1283800652283324, 3703889238001736, 36025498551189504, 124933950274693644, 819125001391673466, 1244326279702202508, 10516894943504990208, 10751334335850714158, 60680817386182440888
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(13*e - 13) * (p^14-1) / (p-1); a[1] = 32767; a[n_] := 32767 * Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); 32767 * prod(i = 1, #f~, (f[i,1]^14 - 1)*f[i,1]^(13*f[i,2] - 13)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

From Amiram Eldar, Nov 08 2022: (Start)
a(n) = 32767 * A161025(n).
Sum_{k=1..n} a(k) ~ c * n^14, where c = (4681/2) * Product_{p prime} (1 + (p^13-1)/((p-1)*p^14)) = 4548.801953... .
Sum_{k>=1} 1/a(k) = (zeta(13)*zeta(14)/32767) * Product_{p prime} (1 - 2/p^14 + 1/p^27) = 3.05203853014...*10^(-5). (End)