This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161161 #32 Feb 18 2024 01:38:07 %S A161161 1,1,1,1,1,2,1,1,2,3,1,1,1,2,3,5,2,2,1,1,2,3,5,7,5,4,3,1,1,1,2,3,5,7, %T A161161 11,8,9,7,6,2,2,1,1,2,3,5,7,11,15,14,15,15,13,11,7,4,3,1,1,1,2,3,5,7, %U A161161 11,15,22,21,25,25,27,23,22,15,13,8,6,2,2,1,1,2,3,5,7,11,15,22,30,32,37,42,44 %N A161161 Irregular triangle of differences T(n,k) = A083906(n,k) - A083906(n-1,k) of q-Binomial coefficients. %H A161161 Michael De Vlieger, <a href="/A161161/b161161.txt">Table of n, a(n) for n = 1..2390</a> (rows 1..30, flattened) %H A161161 William Q. Erickson and Jan Kretschmann, <a href="https://arxiv.org/abs/2311.07522">The structure and normalized volume of Monge polytopes</a>, arXiv:2311.07522 [math.CO], 2023. See p. 16. %H A161161 M. Isachenkov, I. Kirsch, and V. Schomerus, <a href="http://arxiv.org/abs/1403.6857">Chiral Primaries in Strange Metals</a>, arXiv preprint arXiv:1403.6857 [hep-th], 2014. See Eq. (4.6). %F A161161 Sum_{k=0..floor(n^2/4)} T(n, k) = A000079(n-1) (row sums). %F A161161 Sum_{k=0..(n+2 - ceiling(sqrt(4*n)))} T(n-k, k) = A002865(n+1) (antidiagonal sums). %F A161161 Sum_{k=0..floor(n^2/4)} (-1)^k*T(n, k) = A077957(n-1). - _G. C. Greubel_, Feb 13 2024 %e A161161 The differences between 5 3 4 3 1 and 4 2 2 yield row four : 1 1 2 3 1. %e A161161 Triangle begins: %e A161161 1; %e A161161 1, 1; %e A161161 1, 1, 2; %e A161161 1, 1, 2, 3, 1; %e A161161 1, 1, 2, 3, 5, 2, 2; %e A161161 1, 1, 2, 3, 5, 7, 5, 4, 3, 1; %e A161161 1, 1, 2, 3, 5, 7, 11, 8, 9, 7, 6, 2, 2; %e A161161 1, 1, 2, 3, 5, 7, 11, 15, 14, 15, 15, 13, 11, 7, 4, 3, 1; %e A161161 1, 1, 2, 3, 5, 7, 11, 15, 22, 21, 25, 25, 27, 23, 22, 15, 13, 8, 6, 2, 2; %e A161161 ... %p A161161 A161161 := proc(n,m) %p A161161 A083906(n,m)-A083906(n-1,m) ; %p A161161 end proc: %p A161161 for n from 0 to 10 do %p A161161 for k from 0 to A033638(n)-1 do %p A161161 printf("%d, ", A161161(n, k)) ; %p A161161 od: %p A161161 od: # _R. J. Mathar_, Jul 13 2012 %t A161161 b[n_, k_] := b[n, k] = SeriesCoefficient[Sum[QBinomial[n, m, q], {m, 0, n}], {q, 0, k}]; %t A161161 T[n_, k_] := b[n, k] - b[n - 1, k]; %t A161161 Table[Table[T[n, k], {k, 0, n^2/4}], {n, 1, 10}] // Flatten (* _Jean-François Alcover_, Nov 25 2017 *) %o A161161 (Magma) %o A161161 R<x>:=PowerSeriesRing(Rationals(), 100); %o A161161 qBinom:= func< n,k,x | n eq 0 or k eq 0 select 1 else (&*[(1-x^(n-j))/(1-x^(j+1)): j in [0..k-1]]) >; %o A161161 A083906:= func< n,k | Coefficient(R!( (&+[qBinom(n,k,x): k in [0..n]]) ), k) >; %o A161161 A161161:= func< n,k | A083906(n,k) - A083906(n-1,k) >; %o A161161 [A161161(n,k): k in [0..Floor(n^2/4)], n in [1..12]]; // _G. C. Greubel_, Feb 13 2024 %o A161161 (SageMath) %o A161161 def t(n, k): # t = A083906 %o A161161 if k<0 or k> (n^2//4): return 0 %o A161161 elif n<2 : return n+1 %o A161161 else: return 2*t(n-1, k) - t(n-2, k) + t(n-2, k-n+1) %o A161161 def A161161(n,k): return t(n, k) - t(n-1, k) %o A161161 flatten([[A161161(n, k) for k in range(int(n^2//4)+1)] for n in range(1,13)]) # _G. C. Greubel_, Feb 13 2024 %Y A161161 Cf. A000079 (row sums), A002865 (antidiagonal sums), A077957 (alternating row sums). %K A161161 easy,nonn,tabf %O A161161 1,6 %A A161161 _Alford Arnold_, Jun 04 2009