A161166 Decimal expansion of a constant in the linear term in the growth rate of unitary squarefree divisors.
7, 4, 8, 3, 7, 2, 3, 3, 3, 4, 2, 9, 6, 7, 4, 7, 0, 0, 9, 3, 8, 0, 8, 6, 5, 2, 9, 4, 3, 9, 4, 0, 8, 9, 9, 5, 9, 9, 2, 9, 2, 5, 4, 0, 2, 5, 9, 4, 5, 6, 8, 9, 6, 6, 0, 0, 0, 8, 5, 5, 1, 3, 0, 8, 8, 5, 7, 5, 2, 5, 6, 7, 6, 9, 7, 5, 1, 3, 0, 8, 3, 9, 6, 4, 5, 9, 3, 8, 4, 2, 6, 2, 1, 1, 9, 7, 1, 0, 0, 8, 1, 5, 5, 6, 8, 2
Offset: 0
Examples
0.748372333429674...
References
- D. Suryanarayana and V. Siva Rama Prasad, The number of k-ary, k+1-free divisors of an integer, J. Reine Angew. Math. 276 (1975) 15-35.
Links
- Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author]
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 50.
Programs
-
Mathematica
ratfun = (2*p + 1)/((p + 1)*(p^2 + p - 1)); zetas = 0; ratab = Table[konfun = Simplify[ratfun + c/(p^power - 1)] // Together; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*Zeta'[power]/Zeta[power] /. sol; ratfun = konfun /. sol, {power, 2, 25}]; Do[Print[N[Sum[Log[p]*ratfun /. p -> Prime[k], {k, 1, m}] + zetas, 120]], {m, 2000, 20000, 2000}] (* Vaclav Kotesovec, Jun 24 2020 *)
Formula
Equals sum_{primes p} (2p+1)*log(p)/((p+1)(p^2+p-1)) = sum_p log(p)*[2/(p^2-1)-3/p^3-1)+4/(p^4-1)-10/(p^5-1)....] where the terms accumulate; this is essentially the logarithmic derivative of the Riemann zeta function at s=2, 3, 4,...
Extensions
More digits from Vaclav Kotesovec, Jun 24 2020
Comments