cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161167 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 17.

Original entry on oeis.org

1, 65535, 21523360, 2147450880, 38146972656, 1410533397600, 5538821761600, 70367670435840, 308836690967520, 2499961853010960, 4594972986357216, 46220358372556800, 55451384098598320, 362986684146456000, 821051025385244160, 2305807824841605120, 3041324492229179280
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^16 such that the quotient group Z^16 / L is C_n. - Álvar Ibeas, Nov 26 2015

Crossrefs

Column 16 of A263950.

Programs

  • Maple
    A161167 := proc(n)
        add(numtheory[mobius](n/d)*d^16,d=numtheory[divisors](n)) ;
        %/numtheory[phi](n) ;
    end proc:
    for n from 1 to 5000 do
        printf("%d %d\n",n,A161167(n)) ;
    end do: # R. J. Mathar, Mar 15 2016
  • Mathematica
    A161167[n_]:=DivisorSum[n,MoebiusMu[n/#]*#^(17-1)/EulerPhi[n]&]; Array[A161167,20]
    f[p_, e_] := p^(15*e - 15) * (p^16-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^15, d, if(ispower(d, 16), moebius(sqrtnint(d, 16))*sigma(n^15/d), 0))) \\ Altug Alkan, Nov 26 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^16 - 1)*f[i,1]^(15*f[i,2] - 15)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = J_16(n)/J_1(n) = J_16(n)/A000010(n), where J_k is the k-th Jordan totient function.
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(15e-15) * (p^16-1) / (p-1).
For squarefree n, a(n) = A000203(n^15). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^16, where c = (1/16) * Product_{p prime} (1 + (p^15-1)/((p-1)*p^16)) = 0.1214735403... .
Sum_{k>=1} 1/a(k) = zeta(15)*zeta(16) * Product_{p prime} (1 - 2/p^16 + 1/p^31) = 1.00001530597583... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^16). - Ridouane Oudra, Apr 02 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010