cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161195 a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 16.

Original entry on oeis.org

65535, 2147385345, 470177777355, 35182761492480, 499992370589085, 15406315230591285, 51855240592341495, 576434364292792320, 2248845733577866995, 16383250007092548195, 27375595878265462275, 252417068738007613440, 279538958223203141205, 1699140668489253766665
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(14*e - 14) * (p^15-1) / (p-1); a[1] = 65535; a[n_] := 65535* Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); 65535 * prod(i = 1, #f~, (f[i,1]^15 - 1)*f[i,1]^(14*f[i,2] - 14)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

From Amiram Eldar, Nov 08 2022: (Start)
a(n) = 65535 * A161139(n).
Sum_{k=1..n} a(k) ~ c * n^15, where c = 4369 * Product_{p prime} (1 + (p^14-1)/((p-1)*p^15)) = 8491.399817... .
Sum_{k>=1} 1/a(k) = (zeta(14)*zeta(15)/65535) * Product_{p prime} (1 - 2/p^15 + 1/p^29) = 1.5259489736...*10^(-5). (End)