A161198 Triangle of polynomial coefficients related to the series expansions of (1-x)^((-1-2*n)/2).
1, 1, 2, 3, 8, 4, 15, 46, 36, 8, 105, 352, 344, 128, 16, 945, 3378, 3800, 1840, 400, 32, 10395, 39048, 48556, 27840, 8080, 1152, 64, 135135, 528414, 709324, 459032, 160720, 31136, 3136, 128
Offset: 0
Examples
From _Gary W. Adamson_, Jul 19 2011: (Start) The first few rows of matrix M are: 1, 2, 0, 0, 0, ... 1, 3, 2, 0, 0, ... 1, 4, 5, 2, 0, ... 1, 5, 9, 7, 2, ... 1, 6, 14, 16, 9, ... (End) The first few G(p,n) polynomials are: G(p,-3) = 15 - 46*p + 36*p^2 - 8*p^3 G(p,-2) = 3 - 8*p + 4*p^2 G(p,-1) = 1 - 2*p The first few F(p,n) polynomials are: F(p,0) = 1 F(p,1) = 1 + 2*p F(p,2) = 3 + 8*p + 4*p^2 F(p,3) = 15 + 46*p + 36*p^2 + 8*p^3 The first few rows of the upper and lower hourglass triangles are: [15, -46, 36, -8] [3, -8, 4] [1, -2] [1] [1, 2] [3, 8, 4] [15, 46, 36, 8]
Crossrefs
Cf. A001790 [(1-x)^(-1/2)], A001803 [(1-x)^(-3/2)], A161199 [(1-x)^(-5/2)] and A161201 [(1-x)^(-7/2)].
A046161 gives the denominators of the series expansions of all (1-x)^((-1-2*n)/2).
A028338 is a scaled triangle version, A039757 is a scaled signed triangle version and A109692 is a transposed scaled triangle version.
A001147 is the first left hand column and equals the row sums.
A004041 is the second left hand column divided by 2, A028339 is the third left hand column divided by 4, A028340 is the fourth left hand column divided by 8, A028341 is the fifth left hand column divided by 16.
A000012, A000290, A024196, A024197 and A024198 are the first (n-m=0), second (n-m=1), third (n-m=2), fourth (n-m=3) and fifth (n-m=4) right hand columns divided by 2^m.
Cf. A029635. [Gary W. Adamson, Jul 19 2011]
Programs
-
Maple
nmax:=7; for n from 0 to nmax do a(n,n):=2^n: a(n,0):=doublefactorial(2*n-1) od: for n from 2 to nmax do for m from 1 to n-1 do a(n,m) := 2*a(n-1,m-1)+(2*n-1)*a(n-1,m) od: od: seq(seq(a(n,k), k=0..n), n=0..nmax); nmax:=7: M := Matrix(1..nmax+1,1..nmax+1): A029635 := proc(n,k): binomial(n,k) + binomial(n-1,k-1) end: for i from 1 to nmax do for j from 1 to i+1 do M[i,j] := A029635(i,j-1) od: od: for n from 0 to nmax do B := M^n: for m from 0 to n do a(n,m):= B[1,m+1] od: od: seq(seq(a(n,m), m=0..n), n=0..nmax); A161198 := proc(n,k) option remember; if k > n or k < 0 then 0 elif n = 0 and k = 0 then 1 else 2*A161198(n-1, k-1) + (2*n-1)*A161198(n-1, k) fi end: seq(print(seq(A161198(n,k), k = 0..n)), n = 0..6); # Peter Luschny, May 09 2013
-
Mathematica
nmax = 7; a[n_, 0] := (2*n-1)!!; a[n_, n_] := 2^n; a[n_, m_] := a[n, m] = 2*a[n-1, m-1]+(2*n-1)*a[n-1, m]; Table[a[n, m], {n, 0, nmax}, {m, 0, n}] // Flatten (* Jean-François Alcover, Feb 25 2014, after Maple *)
-
PARI
for(n=0,9, print(Vec(Ser( 2^n*prod( k=1,n, x+(2*k-1)/2 ),,n+1)))) \\ M. F. Hasler, Jul 23 2011
-
Sage
@CachedFunction def A161198(n,k): if k > n or k < 0 : return 0 if n == 0 and k == 0: return 1 return 2*A161198(n-1,k-1)+(2*n-1)*A161198(n-1,k) for n in (0..6): [A161198(n,k) for k in (0..n)] # Peter Luschny, May 09 2013
Formula
a(n,m) := coeff(2^(n)*product((x+(2*k-1)/2),k=1..n), x, m) for n = 0, 1, .. ; m = 0, 1, .. .
a(n, m) = 2*a(n-1,m-1)+(2*n-1)*a(n-1,m) with a(n, n) = 2^n and a(n, 0) = (2*n-1)!!.
a(n,m) = the (m+1)-th term in the top row of M^n, where M is an infinite square production matrix; M[i,j] = A029635(i,j-1) = binomial(i, j-1) + binomial(i-1, j-2) with A029635 the (1.2)-Pascal triangle, see the examples and second Maple program. [Gary W. Adamson, Jul 19 2011]
T(n,k) = 2^k * A028338(n,k). - Philippe Deléham, May 14 2015
Comments