This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161224 #24 Feb 16 2025 08:33:10 %S A161224 0,0,1,1,2,1,3,4,1,1,8,7,3,1,1,15,12,4,2,1,1,31,19,8,4,2,1,1,51,30,11, %T A161224 6,3,2,1,1,90,45,19,9,6,3,2,1,1,142,67,26,15,8,5,3,2,1,1,228,97,41,21, %U A161224 13,8,5,3,2,1,1,341,139,56,31,18,12,7,5,3,2,1,1,525,195,83,45,28,17,12,7,5,3,2,1,1 %N A161224 Triangular table a(n,m) that counts the occurrences of m in all partitions of 2n in exactly n parts. %C A161224 Row sums are A066186, or n*p(n) with p(n) = A000041 = the partitions of n. The rows reversed converge to 1,1,2,3,5,7,11,15,... or p(n). The count of partitions of 2n in exactly n parts equals p(n). %C A161224 It appears the row n lists A196087(n) together with the row n of triangle A066633. - _Omar E. Pol_, Feb 26 2012 %H A161224 Alois P. Heinz, <a href="/A161224/b161224.txt">Rows n = 0..140, flattened</a> %H A161224 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EldersTheorem.html">Elder's Theorem</a> %e A161224 Table starts: %e A161224 0; %e A161224 0, 1; %e A161224 1, 2, 1; %e A161224 3, 4, 1, 1; %e A161224 8, 7, 3, 1, 1; %e A161224 since the strict partitions of %e A161224 (2 in 1 part) is {2} with 0 "1" and 1 "2" %e A161224 (4 in 2 parts) is {2,2}, {3,1} with1 "1", 2 "2" and 1 "3" %e A161224 (6 in 3 parts) is {2,2,2}, {3,2,1}, {4,1,1} with 3 "1", 4 "2", 1 "3" and 1 "4" %p A161224 b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0), %p A161224 `if`(i=1, `if`(t=n, 1+t*x, 0), expand(add((p->p+coeff( %p A161224 p, x, 0)*j*x^i)(b(n-i*j, i-1, t-j)), j=0..min(t, n/i))))) %p A161224 end: %p A161224 a:= n->(p->seq(coeff(p, x, i), i=1..n+1))(b(2*n$2, n)): %p A161224 seq(a(n), n=0..12); # _Alois P. Heinz_, Feb 11 2014 %t A161224 <<Combinatorica`; partitionexact[n_,m_]:= TransposePartition /@ (Prepend[ #, m]& /@ Partitions[n-m,m]); Table[If[n==0, {0}, CoefficientList[ Apply[ Plus, x^#& /@ partitionexact[2n, n], {0,1}]/x, x]], {n, 0, 24}] %t A161224 (* second program: *) %t A161224 b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i == 1, If[t == n, 1+t*x, 0], Expand[Sum[Function[p, p + Coefficient[p, x, 0]*j*x^i][ b[n-i*j, i-1, t-j]], {j, 0, Min[t, n/i]}]]]]; %t A161224 a[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n+1}]][b[2n, 2n, n] ]; %t A161224 Table[a[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, May 24 2016, after _Alois P. Heinz_ *) %Y A161224 Cf. A066186, A066633. %K A161224 nonn,tabl %O A161224 0,5 %A A161224 _Wouter Meeussen_, Jun 06 2009 %E A161224 Row 0 inserted and tabf changed to tabl by _Alois P. Heinz_, Feb 11 2014