cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161240 Number of partitions of n into central binomial coefficients A001405.

This page as a plain text file.
%I A161240 #13 Jul 06 2022 15:30:23
%S A161240 1,2,3,4,5,8,9,12,15,19,22,29,33,40,47,56,63,76,85,100,113,131,146,
%T A161240 169,187,214,237,268,295,334,365,410,449,499,545,606,657,727,789,868,
%U A161240 940,1033,1114,1219,1315,1433,1542,1678,1800,1954,2095,2266,2426,2619,2798
%N A161240 Number of partitions of n into central binomial coefficients A001405.
%H A161240 R. H. Hardin, <a href="/A161240/b161240.txt">Table of n, a(n) for n = 1..1000</a>
%F A161240 G.f.: 1/Product_{j>=1} (1 - x*binomial(j, floor(j/2))). - _Emeric Deutsch_, Jun 21 2009
%e A161240 a(6)=8 because we have 6, 33, 321, 3111, 222, 2211, 21111, and 111111. - _Emeric Deutsch_, Jun 21 2009
%p A161240 g := 1/(product(1-x^binomial(j, floor((1/2)*j)), j = 1 .. 15)): gser := series(g, x = 0, 63): seq(coeff(gser, x, n), n = 1 .. 55); # _Emeric Deutsch_, Jun 21 2009
%K A161240 nonn
%O A161240 1,2
%A A161240 _R. H. Hardin_, Jun 06 2009