cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161294 Number of partitions of n into numbers not divisible by 4 where every part appears at least 3 times.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 1, 2, 3, 3, 3, 6, 5, 6, 10, 8, 9, 15, 13, 16, 22, 20, 24, 33, 32, 36, 47, 48, 53, 71, 68, 77, 100, 99, 112, 140, 138, 158, 194, 199, 219, 268, 275, 305, 369, 377, 416, 501, 514, 572, 671, 693, 768, 898, 935, 1028, 1189, 1245, 1364, 1576, 1642, 1798, 2063
Offset: 1

Views

Author

R. H. Hardin, Jun 06 2009

Keywords

Examples

			a(13)=5 because we have (3^3)(1^4), (2^5)(1^3), (2^4)(1^5), (2^3)(1^7), and 1^(13). - _Emeric Deutsch_, Jun 21 2009
		

Crossrefs

Cf. A100405.

Programs

  • Maple
    g := -1+(product(1+x^(3*j)/(1-x^j), j = 1 .. 40))/(product(1+x^(12*j)/(1-x^(4*j)), j = 1 .. 40)): gser := series(g, x = 0, 70): seq(coeff(gser, x, n), n = 2 .. 68); # Emeric Deutsch, Jun 21 2009
  • Mathematica
    (* Closed form for the constant c: *) N[Pi^2/3 + 1/2*(Log[-1/3 - 1/6*(1 + I*Sqrt[3])*(25/2 - (3*Sqrt[69])/2)^(1/3) - 1/6*(1 - I*Sqrt[3])*(1/2*(25 + 3*Sqrt[69]))^(1/3)]^2 + Log[-1/3 - 1/6*(1 - I*Sqrt[3])*(25/2 - (3*Sqrt[69])/2)^(1/3) - 1/6*(1 + I*Sqrt[3])*((1/2)*(25 + 3*Sqrt[69]))^(1/3)]^2 + 2*(-PolyLog[2, 1/3*(1 - (2/(25 - 3*Sqrt[69]))^(1/3) - (1/2*(25 - 3*Sqrt[69]))^(1/3))] + PolyLog[2, ((1 + I*Sqrt[3])*(1/2*(9 - Sqrt[69]))^(1/3))/(2*3^(2/3)) + (1 - I*Sqrt[3])/(2^(2/3)*(3*(9 - Sqrt[69]))^(1/3))] + PolyLog[2, ((1 - I*Sqrt[3])*(1/2*(9 - Sqrt[69]))^(1/3)) / (2*3^(2/3)) + (1 + I*Sqrt[3])/(2^(2/3)*(3*(9 - Sqrt[69]))^(1/3))])), 100] // Chop (* Vaclav Kotesovec, Jun 15 2025 *)

Formula

G.f.: -1 + (Product_{j>=1} (1 + x^(3*j)/(1-x^j)))/Product_{j>=1} (1 + x^(12*j)/(1-x^(4*j))). - Emeric Deutsch, Jun 21 2009
a(n) ~ (6*c + Pi^2)^(1/4) * exp(sqrt((6*c + Pi^2)*n/2)) / (2^(11/4) * sqrt(Pi) * n^(3/4)), where c = Integral_{x=0..oo} log(1 - exp(-x) + exp(-3*x)) dx = -0.77271248407593487127235205445116662610863126869049971822566... - Vaclav Kotesovec, Jun 15 2025