A161328 E-toothpick sequence (see Comments lines for definition).
0, 1, 4, 9, 16, 29, 40, 57, 72, 93, 116, 141, 168, 201, 228, 253, 268, 293, 328, 369, 424, 477, 536, 597, 656, 721, 784, 841, 888, 925, 972, 1037, 1108, 1205, 1300, 1405, 1500, 1589, 1672, 1753, 1840, 1933, 2012, 2085, 2164, 2253, 2360, 2473, 2592, 2705, 2820
Offset: 0
Keywords
Links
- David Applegate, The movie version
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- Dr. Goulu, 2012, Mayas, Kaya et cure-dents, Pourquoi Comment Combien blog, January 2012 (in French).
- Omar E. Pol, A magic wand with star in the E-toothpick cellular automaton
- Omar E. Pol, Illustration of initial terms of A160120, A161206, A161328, A161330
- N. J. A. Sloane, A single E-toothpick
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Zozoped, Illustration of the structure, a(42) = 2012 [Broken link].
- Zozoped, Illustration of the structure, a(42) = 2012, "Nous avons vu se lever son étoile", Le blog du Barabel [broken link].
- Index entries for sequences related to toothpick sequences
- Index entries for sequences related to cellular automata
Formula
For n >= 3, a(n) = 4 + Sum_{k=3..n} 2*Sum_{x=1..3} A220498(k-x) + 2^((k mod 2) + 1) - 7. - Christopher Hohl, Feb 24 2019
Extensions
a(8) corrected, more terms appended by R. J. Mathar, Jan 21 2010
Extensive edits by Omar E. Pol, May 14 2012
I have copied the rule for adding new E-toothpicks (described by N. J. A. Sloane) from A161330. - Omar E. Pol, Dec 07 2012
Comments