cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161336 Snowflake tree sequence: (A161330(n+1) - 2)/6.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 10, 13, 16, 21, 24, 29, 36, 37, 40, 43, 48, 57, 62, 75, 82, 91, 104, 111, 122, 135, 138, 145, 152, 161, 176, 187, 208, 223, 238, 255, 266, 279, 294, 309, 324, 333, 344, 363, 376, 397, 418, 435, 452, 475, 492, 519, 536, 555, 582, 603, 630, 649, 666, 683
Offset: 0

Views

Author

Omar E. Pol, Jun 09 2009

Keywords

Comments

This is an E-toothpick sequence. On a triangular graph paper consider an infinite 60-degree wedge in which there is a single (and virtual) toothpick connected to its vertex. At stage 0 we start with no E-toothpicks. At stage 1 we place an E-toothpick, and so on. The sequence gives the number of E-toothpicks in the structure after n stages. A211974 (the first differences) gives the number added at the n-th stage. The structure is the tree that arise from one of the six spokes of the structure of A213360 which is essentially the same as the E-toothpick (or snowflake) structure of A161330. For n >> 1 the structure looks like a quadrilateral formed by two scalene right triangles which are joined at their hypotenuses. - Omar E. Pol, Dec 19 2012

Crossrefs

Formula

a(n) = A213360(n)/6. - Omar E. Pol, Dec 20 2012

Extensions

Extended and edited by Omar E. Pol, Dec 19 2012