A161415 First differences of A160414.
1, 8, 12, 28, 12, 36, 36, 92, 12, 36, 36, 108, 36, 108, 108, 292, 12, 36, 36, 108, 36, 108, 108, 324, 36, 108, 108, 324, 108, 324, 324, 908, 12, 36, 36, 108, 36, 108, 108, 324, 36, 108, 108, 324, 108, 324, 324, 972, 36, 108, 108, 324, 108, 324, 324, 972, 108, 324, 324
Offset: 1
Keywords
Links
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Omar E. Pol, Illustration of initial terms [From _Omar E. Pol_, Nov 11 2009]
- D. Applegate, Omar E. Pol, N. J. A. Sloane, The toothpick sequence and other sequences from cellular automata, arXiv:1004.3036 [math.CO] [From _R. J. Mathar_, Oct 16 2010]
Crossrefs
Programs
-
Maple
Contribution from R. J. Mathar, Oct 16 2010: (Start) isA000079 := proc(n) if type(n,'even') then nops(numtheory[factorset](n)) = 1 ; else false ; fi ; end proc: A048883 := proc(n) 3^wt(n) ; end proc: A161415 := proc(n) if n = 1 then 1; elif isA000079(n) then 4*A048883(n-1)-2*n ; else 4*A048883(n-1) ; end if; end proc: seq(A161415(n),n=1..90) ; (End)
-
Mathematica
a[1] = 1; a[n_] := 4*3^DigitCount[n-1, 2, 1] - If[IntegerQ[Log[2, n]], 2n, 0]; Array[a, 60] (* Jean-François Alcover, Nov 17 2017, after N. J. A. Sloane *)
Formula
For n > 1, a(n) = 4*A048883(n-1), except a(n) = 4*A048883(n-1) - 2n if n is a power of 2. - N. J. A. Sloane, Jul 13 2009
Extensions
More terms from R. J. Mathar, Oct 16 2010