A161424 Numbers k whose largest divisor <= sqrt(k) equals 4.
16, 20, 24, 28, 32, 44, 52, 68, 76, 92, 116, 124, 148, 164, 172, 188, 212, 236, 244, 268, 284, 292, 316, 332, 356, 388, 404, 412, 428, 436, 452, 508, 524, 548, 556, 596, 604, 628, 652, 668, 692, 716, 724, 764, 772, 788, 796, 844, 892, 908, 916, 932, 956, 964
Offset: 1
Links
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos
- Omar E. Pol, Illustration: Divisors and pi(x)
- Omar E. Pol, Illustration for A008578, A161344, A161345 and A161424 [From _Omar E. Pol_, Oct 24 2009]
Crossrefs
Programs
-
Maple
isA := proc(n,s) if n mod s <> 0 then RETURN(false); fi; if n/s-s >= 0 then RETURN(true); else RETURN(false); fi; end: isA161424 := proc(n) for s from 5 to n do if isA(n,s) then RETURN(false); fi; od: isA(n,4) ; end: for n from 1 to 3000 do if isA161424(n) then printf("%d,",n) ; fi; od; # R. J. Mathar, Jun 24 2009
-
Mathematica
Select[Range[1, 1000], Function[m, Max[Select[Divisors[m], # <= Sqrt[m] &]] == 4]] (* Ashton Baker, Nov 03 2013 *)
Formula
Numbers n such that A033676(n)=4. - Omar E. Pol, Jul 05 2009
Extensions
Terms beyond a(8) from R. J. Mathar, Jun 24 2009
Definition added by R. J. Mathar, Jun 28 2009
Comments