A161556 Exponential Riordan array [1 + (sqrt(Pi)/2)*x*exp(x^2/4)*erf(x/2), x].
1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 2, 0, 6, 0, 1, 0, 10, 0, 10, 0, 1, 6, 0, 30, 0, 15, 0, 1, 0, 42, 0, 70, 0, 21, 0, 1, 24, 0, 168, 0, 140, 0, 28, 0, 1, 0, 216, 0, 504, 0, 252, 0, 36, 0, 1, 120, 0, 1080, 0, 1260, 0, 420, 0, 45, 0, 1
Offset: 0
Examples
Triangle begins 1; 0, 1; 1, 0, 1; 0, 3, 0, 1; 2, 0, 6, 0, 1; 0, 10, 0, 10, 0, 1; 6, 0, 30, 0, 15, 0, 1; 0, 42, 0, 70, 0, 21, 0, 1; 24, 0, 168, 0, 140, 0, 28, 0, 1; Production matrix begins 0, 1; 1, 0, 1; 0, 2, 0, 1; -1, 0, 3, 0, 1; 0, -4, 0, 4, 0, 1; 6, 0, -10, 0, 5, 0, 1; 0, 36, 0, -20, 0, 6, 0, 1;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
T[n_, k_] := Boole[k <= n] Binomial[n, k] ((n-k)/2)! (1 + (-1)^(n-k))/2; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 30 2016 *)
Formula
T(n,k) = [k<=n]*binomial(n,k)*((n-k)/2)!*(1+(-1)^(n-k))/2.
G.f.: 1/(1-x*y-x^2/(1-x*y-x^2/(1-x*y-2x^2/(1-x*y-2x^2/(1-x*y-3x^2/(1-... (continued fraction).
Comments