This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161583 #5 Jul 03 2023 11:15:14 %S A161583 0,17,4896,1405152,403273745,115738159680,33216448554432, %T A161583 9533004996962321,2735939217679631712,785205022469057339040, %U A161583 225351105509401776672785,64674982076175840847750272,18561494504756956921527655296,5327084247883170460637589319697 %N A161583 The list of the k values in the common solutions to the 2 equations 15*k+1=A^2, 19*k+1=B^2. %C A161583 The 2 equations are equivalent to the Pell equation x^2-285*y^2=1, %C A161583 with x=(285*k+17)/2 and y=A*B/2, case C=15 in A160682. %H A161583 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (288, -288, 1). %F A161583 k(t+3)=288*(k(t+2)-k(t+1))+k(t). %F A161583 k(t)=((17+w)*((287+17*w)/2)^(t-1)+(17-w)*((287-17*w)/2)^(t-1))/570 where w=sqrt(285). %F A161583 k(t) = floor of ((17+w)*((287+17*w)/2)^(t-1))/570; %F A161583 G.f.: -17*x^2/((x-1)*(x^2-287*x+1)). %p A161583 t:=0: for n from 0 to 1000000 do a:=sqrt(15*n+1): b:=sqrt(19*n+1): %p A161583 if (trunc(a)=a) and (trunc(b)=b) then t:=t+1: print(t,n,a,b): end if: end do: %Y A161583 Cf. A160682, A161595 (sequence of A), A161599 (sequence of B) %K A161583 nonn %O A161583 1,2 %A A161583 _Paul Weisenhorn_, Jun 14 2009 %E A161583 Edited, extended by _R. J. Mathar_, Sep 02 2009