This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161585 #7 Jun 07 2023 18:42:48 %S A161585 0,9,720,56880,4492809,354875040,28030635360,2214065318409, %T A161585 174883129518960,13813553166679440,1091095817038156809, %U A161585 86182755992847708480,6807346627617930813120,537694200825823686528009,42471034518612453304899600,3354674032769557987400540400 %N A161585 The list of the k values in the common solutions to the 2 equations 7*k+1=A^2, 11*k+1=B^2. %C A161585 The 2 equations are equivalent to the Pell equation x^2-77*y^2=1, %C A161585 with x=(77*k+9)/2 and y= A*B/2, case C=7 in A160682. %H A161585 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (80,-80,1) %F A161585 k(t+3)=80*(k(t+2)-k(t+1))+k(t). %F A161585 k(t)=((9+w)*((79+9*w)/2)^(t-1)+(9-w)*((79-9*w)/2)^(t-1))/154 where w=sqrt(77). %F A161585 k(t) = floor of ((9+w)*((79+9*w)/2)^(t-1))/154. %F A161585 G.f.: -9*x^2/((x-1)*(x^2-79*x+1)). %p A161585 t:=0: for n from 0 to 1000000 do a:=sqrt(7*n+1): b:=sqrt(11*n+1): %p A161585 if (trunc(a)=a) and (trunc(b)=b) then t:=t+1: print(t,n,a,b): end if: end do: %t A161585 LinearRecurrence[{80,-80,1},{0,9,720},20] (* _Harvey P. Dale_, Jun 07 2023 *) %Y A161585 Cf. A160682, A070998 (sequence of A), A057081 (sequence of B) %K A161585 nonn,easy %O A161585 1,2 %A A161585 _Paul Weisenhorn_, Jun 14 2009 %E A161585 Edited, extended by _R. J. Mathar_, Sep 02 2009