cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161682 Primes that are not of the form x^3 - y^2.

Original entry on oeis.org

3, 5, 17, 29, 31, 37, 41, 43, 59, 73, 97, 101, 103, 113, 131, 137, 149, 157, 163, 173, 179, 181, 197, 211, 227, 229, 241, 257, 263, 269, 281, 283, 311, 313, 317, 331, 337, 347, 349, 353, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 443, 449, 457, 461, 467, 479, 491, 509, 521, 523, 541
Offset: 1

Views

Author

Cino Hilliard, Jun 16 2009

Keywords

Comments

The current values are conjectural as they have been reduced from a finite list of values x^3 - y^2 within a search radius x,y < 10000.
Conjecture: The sequence is infinite.
No more solutions with x < 2.2*10^9. - Daniel Starodubtsev, Jan 22 2020

Crossrefs

Equals A000040 \ A161681.

Programs

  • Mathematica
    (* assuming x < 10^4 *) notOfTheForm[p_] := Do[r = Reduce[ y > 0 && p == x^3 - y^2, {y}, Integers]; If[r =!= False, If[x > xmax, xmax = x; Print["xmax = ", xmax]]; Return[True]], {x, 1, 10^4}] =!= True; xmax = 1; Reap[ Do[ If[ notOfTheForm[p], Print["p = ", p]; Sow[p]], {p, Prime /@ Range[100]}]][[2, 1]] (* Jean-François Alcover, Oct 09 2012 *)
  • PARI
    diffcubesq(n) =
    {
    local(a,c=0,c2=0,j,k,y);
    a=vector(floor(n^2/log(n^2)));
    for(j=1,n,
    for(k=1,n, y=j^3-k^2; if(ispseudoprime(y), c++; a[c]=y;););
    );
    a=vecsort(a);
    for(j=2,c/2,
    if(a[j]!=a[j-1], c2++; print1(a[j]","); if(c2>100,break););
    );
    }

Extensions

Worthless link removed by R. J. Mathar, Jul 16 2009
a(28)-a(61) from Jean-François Alcover, Oct 09 2012