This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161701 #32 Sep 08 2022 08:45:45 %S A161701 1,2,3,4,6,12,28,64,135,262,473,804,1300,2016,3018,4384,6205,8586, %T A161701 11647,15524,20370,26356,33672,42528,53155,65806,80757,98308,118784, %U A161701 142536,169942,201408,237369,278290,324667,377028,435934,501980,575796,658048 %N A161701 a(n) = (n^5 - 5*n^4 + 5*n^3 + 5*n^2 + 114*n + 120)/120. %C A161701 {a(k): 0 <= k < 6} = divisors of 12: %C A161701 a(n) = A027750(A006218(11) + k + 1), 0 <= k < A000005(12). %H A161701 Vincenzo Librandi, <a href="/A161701/b161701.txt">Table of n, a(n) for n = 0..10000</a> %H A161701 R. Zumkeller, <a href="/A161700/a161700.txt">Enumerations of Divisors</a> %H A161701 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A161701 a(n) = C(n,0) + C(n,1) + C(n,4) + C(n,5). %F A161701 G.f.: (1-4*x+6*x^2-4*x^3+2*x^4)/(1-x)^6. - _Colin Barker_, Aug 20 2012 %e A161701 Differences of divisors of 12 to compute the coefficients of their interpolating polynomial, see formula: %e A161701 1 2 3 4 6 12 %e A161701 1 1 1 2 6 %e A161701 0 0 1 4 %e A161701 0 1 3 %e A161701 1 2 %e A161701 1 %p A161701 A161701:=n->(n^5 - 5*n^4 + 5*n^3 + 5*n^2 + 114*n + 120)/120: seq(A161701(n), n=0..60); # _Wesley Ivan Hurt_, Jul 16 2017 %t A161701 CoefficientList[Series[(1-4*x+6*x^2-4*x^3+2*x^4)/(1-x)^6, {x, 0, 50}], x] (* _G. C. Greubel_, Jul 16 2017 *) %o A161701 (Magma) [(n^5 - 5*n^4 + 5*n^3 + 5*n^2 + 114*n + 120)/120: n in [0..50]]; // _Vincenzo Librandi_, Dec 27 2010 %o A161701 (PARI) a(n)=(n^5-5*n^4+5*n^3+5*n^2+114*n+120)/120 \\ _Charles R Greathouse IV_, Sep 24 2015 %Y A161701 Cf. A000124, A000125, A000127, A002522, A005408, A006261, A016813, A058331, A080856, A086514, A161702, A161703, A161704, A161706, A161707, A161708, A161710, A161711, A161712, A161713, A161715. %K A161701 nonn,easy %O A161701 0,2 %A A161701 _Reinhard Zumkeller_, Jun 17 2009