This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161703 #28 Oct 04 2024 19:29:37 %S A161703 1,3,5,15,41,91,173,295,465,691,981,1343,1785,2315,2941,3671,4513, %T A161703 5475,6565,7791,9161,10683,12365,14215,16241,18451,20853,23455,26265, %U A161703 29291,32541,36023,39745,43715,47941,52431,57193,62235,67565,73191,79121 %N A161703 a(n) = (4*n^3 - 12*n^2 + 14*n + 3)/3. %C A161703 {a(k): 0 <= k < 4} = divisors of 15: %C A161703 a(n) = A027750(A006218(14) + k + 1), 0 <= k < A000005(15). %H A161703 G. C. Greubel, <a href="/A161703/b161703.txt">Table of n, a(n) for n = 0..1000</a> %H A161703 R. Zumkeller, <a href="/A161700/a161700.txt">Enumerations of Divisors</a> %H A161703 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A161703 a(n) = C(n,0) + 2*C(n,1) + 8*C(n,3). %F A161703 G.f.: (1-x-x^2+9*x^3)/(1-x)^4. - _Colin Barker_, Jan 08 2012 %e A161703 Differences of divisors of 15 to compute the coefficients of their interpolating polynomial, see formula: %e A161703 1 3 5 15 %e A161703 2 2 10 %e A161703 0 8 %e A161703 8 %p A161703 A161703:=n->(4*n^3 - 12*n^2 + 14*n + 3)/3: seq(A161703(n), n=0..100); # _Wesley Ivan Hurt_, Jul 16 2017 %t A161703 CoefficientList[Series[(1 - x - x^2 + 9*x^3)/(1 - x)^4, {x, 0, 50}], x] (* _G. C. Greubel_, Jul 16 2017 *) %t A161703 LinearRecurrence[{4,-6,4,-1},{1,3,5,15},50] (* _Harvey P. Dale_, Oct 04 2024 *) %o A161703 (Magma) [(4*n^3 - 12*n^2 + 14*n + 3)/3: n in [0..50]]; // _Vincenzo Librandi_, Dec 27 2010 %o A161703 (PARI) a(n)=n*(4*n^2-12*n+14)/3+1 \\ _Charles R Greathouse IV_, Sep 24 2015 %Y A161703 Cf. A000124, A000125, A000127, A002522, A005408, A006261, A016813, A058331, A080856, A086514, A161701, A161702, A161704, A161706-A161708, A161710, A161711-A161713, A161715. %K A161703 nonn,easy %O A161703 0,2 %A A161703 _Reinhard Zumkeller_, Jun 17 2009