This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161711 #25 Sep 08 2022 08:45:45 %S A161711 1,2,13,26,33,26,-3,-62,-159,-302,-499,-758,-1087,-1494,-1987,-2574, %T A161711 -3263,-4062,-4979,-6022,-7199,-8518,-9987,-11614,-13407,-15374, %U A161711 -17523,-19862,-22399,-25142,-28099,-31278,-34687,-38334,-42227,-46374,-50783 %N A161711 a(n) = (-4*n^3 + 27*n^2 - 20*n + 3)/3. %C A161711 {a(k): 0 <= k < 4} = divisors of 26: %C A161711 a(n) = A027750(A006218(25) + k + 1), 0 <= k < A000005(26). %H A161711 Vincenzo Librandi, <a href="/A161711/b161711.txt">Table of n, a(n) for n = 0..10000</a> %H A161711 R. Zumkeller, <a href="/A161700/a161700.txt">Enumerations of Divisors</a> %H A161711 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A161711 a(n) = C(n,0) + C(n,1) + 10*C(n,2) - 8*C(n,3). %F A161711 G.f.: (1-2*x+11*x^2-18*x^3)/(1-x)^4. - _Bruno Berselli_, Jul 17 2011 %e A161711 Differences of divisors of 26 to compute the coefficients of their interpolating polynomial, see formula: %e A161711 1 2 13 26 %e A161711 1 11 13 %e A161711 10 2 %e A161711 -8 %t A161711 LinearRecurrence[{4,-6,4,-1},{1,2,13,26},40] (* _Harvey P. Dale_, Jul 02 2017 *) %o A161711 (Magma) [(-4*n^3 + 27*n^2 - 20*n + 3)/3: n in [0..40]]; // _Vincenzo Librandi_, Jul 17 2011 %o A161711 (PARI) x='x+O('x^50); Vec((1-2*x+11*x^2-18*x^3)/(1-x)^4) \\ _G. C. Greubel_, Jul 16 2017 %Y A161711 Cf. A005408, A000124, A016813, A086514, A000125, A058331, A002522, A161701, A161702, A161703, A000127, A161704, A161706, A161707, A161708, A161710, A080856, A161712, A161713, A161715, A006261. %K A161711 sign,easy %O A161711 0,2 %A A161711 _Reinhard Zumkeller_, Jun 17 2009