This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161735 #5 Oct 01 2013 21:35:30 %S A161735 17,73,113,131,229,409,443,617,673,739,953,1153,1171,1889,2393,5087, %T A161735 6217,6553,8669,9433,9973,11321,11897,13877,14633,14737,15823,17377, %U A161735 18539,19081,19441,20393,20611,21841,25469,26249,26833,28649,29599 %N A161735 Primes that are the difference between a fourth power and a positive cube. %C A161735 There are primes like p = 20393, 3905513, 5177033, 28398833, or 10877895569 which have more than one representation p=x^4-y^3, with x,y>=1. %C A161735 My guess is that the number of duplicates is infinite. %F A161735 If x^4-y^3 is prime for integers x >=1, y>=1, list it. %o A161735 (PARI) difffourthcube(n) = %o A161735 { %o A161735 local(a,c=0,c2=0,j,k,y); %o A161735 a=vector(floor(n^2/log(n^2))); %o A161735 for(j=1,n, %o A161735 for(k=1,n, %o A161735 y=j^4-k^3; %o A161735 if(ispseudoprime(y), %o A161735 c++; %o A161735 \\ print(j","k","y); %o A161735 a[c]=y; %o A161735 ); %o A161735 ); %o A161735 ); %o A161735 a=vecsort(a); %o A161735 for(j=2,c, %o A161735 if(a[j]!=a[j-1]&&a[j]!=0, %o A161735 c2++; %o A161735 print1(a[j]","); %o A161735 if(c2>100,break); %o A161735 ); %o A161735 ); %o A161735 } %K A161735 nonn %O A161735 1,1 %A A161735 _Cino Hilliard_, Jun 17 2009