This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161747 #5 Oct 01 2013 21:35:30 %S A161747 31,227,1051,3109,7151,15511,18127,30367,32143,32687,144719,151051, %T A161747 165311,186343,234191,302399,369997,371281,374239,407503,454303, %U A161747 509263,531263,537743,759359,1053007,1088081,1182287,1185601,1354321,1381441 %N A161747 Primes of the form x^5-y^4, where x,y >= 1. %C A161747 If a prime has multiple representations of the format, it is entered only once. %F A161747 If x^5-y^4 is prime for integers x,y list without duplicates. %e A161747 2^5 - 1^4 = 31. %o A161747 (PARI) diffpowers(n,m) = %o A161747 { %o A161747 local(a,c=0,c2=0,j,k,y); %o A161747 a=vector(floor(n^2/log(n^2))); %o A161747 for(j=1,n, %o A161747 for(k=1,n, %o A161747 y=j^m-k^(m-1); %o A161747 if(ispseudoprime(y), %o A161747 c++; %o A161747 \\ print(j","k","y); %o A161747 a[c]=y; %o A161747 ); %o A161747 ); %o A161747 ); %o A161747 a=vecsort(a); %o A161747 for(j=2,length(a), %o A161747 if(a[j]!=a[j-1]&&a[j]!=0, %o A161747 c2++; %o A161747 print1(a[j]","); %o A161747 if(c2>100,break); %o A161747 ); %o A161747 ); %o A161747 } %K A161747 nonn %O A161747 1,1 %A A161747 _Cino Hilliard_, Jun 17 2009