A161748 Smallest prime in the set of primes of the form x^n - y^(n-1), 1<=x, 1<=y.
2, 2, 2, 17, 31, 971, 127, 856073, 19427, 58537, 176123, 529393, 8191, 128467258961, 977123207545039, 43013953, 131071, 3814697134553, 524287, 79792266297087713
Offset: 1
Keywords
Examples
3^1 - 1^0 = 2, 2^2 - 2 = 2, 3^3 - 5^2 = 2, so 2,2,2 are the first 3 entries.
Programs
-
PARI
diffpowers(n,m) = { local(a,c=0,c2=0,j,k,y); a=vector(floor(n^2/log(n^2))); for(j=1,n, for(k=1,n, y=j^m-k^(m-1); if(ispseudoprime(y), c++; a[c]=y;); ); ); a=vecsort(a); for(j=2,length(a), if(a[j]!=a[j-1]&&a[j]!=0, c2++; print1(a[j]","); if(c2>100,break);); ); }
Extensions
Definition reworded - R. J. Mathar, Aug 30 2010
Comments