This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161771 #37 Sep 08 2022 08:45:45 %S A161771 3,3,7,7,3,6,8,7,5,8,7,6,9,3,5,4,7,1,4,6,6,3,1,9,6,3,2,5,0,6,0,2,4,4, %T A161771 6,3,2,0,0,0,0,0,0,0,0,8,0,2,3,1,9,3,5,6,6,2,5,2,4,9,5,7,7,1,0,4,4,1, %U A161771 2,4,0,6,5,9,7,4,0,9,9,7,1,0,0,6,8,5,9,8,5,1,9,3,7,0,6,5,2,2,3,2,2,8,1,6,9 %N A161771 Decimal expansion of (70*exp(Pi*sqrt(163)))^2. %C A161771 Where exp^(Pi*sqrt163) is the Ramanujan constant and 70^2 is related to the norm vector 0 of the Leech lattice where 1^2 + 2^2 + 3^2 + ... + 22^2 + 23^2 + 24^2 = 70^2. A curiosity is: exp^2(Pi*sqrt163)*70^2 ~ hc/piGm^2 where all physics values are CODATA 2006 and m = neutron mass and exp^2(Pi*sqrt163)*70^2 = 3.377368...x 10^38 and hc/piGm^2 = 3.37700 x 10^38 (+- 0.00050) where 0.00050 = u_c which is the combined standard uncertainty. %C A161771 This can also be expressed in a symmetric form in terms of the square of the neutron mass in units of Planck mass: where hc/2PiGm^2 = (Mp/m)^2 (Mp = Planck mass and m = neutron mass) and (exp^2(Pi*sqrt163)70^2)/2 ~ (Mp/m)^2. Note the divisor 2 in this case, which yields (exp^2(Pi*sqrt163)*70^2)/2 = 168868437938467735733159816253012231600.00000040115967. - _Mark A. Thomas_, Jul 02 2009 %H A161771 G. C. Greubel, <a href="/A161771/b161771.txt">Table of n, a(n) for n = 39..10038</a> %H A161771 R. Munafo, <a href="http://www.mrob.com/pub/math/numbers.html">Notable Properties of Specific Numbers</a> %H A161771 M. A. Thomas, <a href="https://hal.archives-ouvertes.fr/hal-01232022">Math Ontological Basis of Quasi Fine-Tuning in Ghc Cosmologies</a>, HAL preprint Id: hal-01232022, 2015. %H A161771 M. A. Thomas, <a href="https://hal.archives-ouvertes.fr/hal-01580821">Number Theoretic Structural Approach to Dimensionless Physics Forms</a>, HAL preprint Id: hal-01580821 [math.NT], 2017. %F A161771 Equals exp(2*Pi*sqrt(163))*70^2. %e A161771 337736875876935471466319632506024463200.00000080231935662524957710... %p A161771 evalf((70*exp(Pi*sqrt(163)))^2,120); # _Muniru A Asiru_, Oct 25 2018 %t A161771 First@ RealDigits[Exp[Pi Sqrt[163]]^2 70^2, 10, 105] (* _Mark A. Thomas_, Jun 18 2009, edited by _Michael De Vlieger_, Feb 19 2018 *) %o A161771 (PARI) default(realprecision, 100); exp(2*Pi*sqrt(163))*70^2 \\ _G. C. Greubel_, Oct 24 2018 %o A161771 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Exp(2*Pi(R)*Sqrt(163))*70^2; // _G. C. Greubel_, Oct 24 2018 %Y A161771 Near relation to A160514 and A160515. %K A161771 nonn,cons %O A161771 39,1 %A A161771 _Mark A. Thomas_, Jun 18 2009