This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161808 #11 Feb 18 2019 23:47:15 %S A161808 1,3,3,3,9,12,12,27,36,57,141,165,135,321,450,399,780,1068,1308,2913, %T A161808 3537,2736,5940,8430,7173,13251,18267,17661,35007,45051,31866,58506, %U A161808 85890,65694,102000,145293,101547,140574,203781,114765,93051,161754 %N A161808 G.f.: A(q) = exp( Sum_{n>=1} A162552(n) * 3*A038500(n) * q^n/n ). %C A161808 A162552 forms the l.g.f. of log[ Sum_{n>=0} x^(n^2) ], and %C A161808 A038500(n) is the highest power of 3 dividing n. %C A161808 The first negative term is a(43) = -162729. %H A161808 Paul D. Hanna, <a href="/A161808/b161808.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..100 from Georg Fischer) %e A161808 G.f.: A(q) = 1 + 3*q + 3*q^2 + 3*q^3 + 9*q^4 + 12*q^5 + 12*q^6 +... %e A161808 log(A(q)) = 3*q - 3*q^2/2 + 9*q^3/3 + 9*q^4/4 - 12*q^5/5 + 45*q^6/6 - 18*q^7/7 +... %e A161808 Compare to: q - q^2/2 + q^3/3 + 3*q^4/4 - 4*q^5/5 + 5*q^6/6 - 6*q^7/7 +... %e A161808 which equals log( Sum_{n>=0} q^(n^2) ) as described by A162552. %o A161808 (PARI) {a(n)=local(Q=sum(m=0,n,x^(m^2))+x*O(x^n),A); A=exp(sum(k=1,n,polcoeff(log(Q),k)*3*3^valuation(k,3)*x^k)+x*O(x^n));polcoeff(A,n)} %Y A161808 Cf. A161804 (variant). %K A161808 sign %O A161808 0,2 %A A161808 _Paul D. Hanna_, Jul 21 2009