cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A142351 Primes of the form k/(3*(c(k)-r(k))), where c(k) = k-th composite and r(k) = k-th nonprime.

Original entry on oeis.org

3, 13, 11, 17, 29, 31, 23, 41, 43, 53, 61, 41, 43, 67, 47, 71, 73, 79, 83, 67, 101, 107, 109, 113, 79, 137, 139, 97, 149, 101, 157, 107, 167, 173, 179, 127, 191, 193, 197, 199, 139, 211, 223, 151, 227, 229, 241, 167, 251, 179, 269, 271, 277, 281, 283, 307, 311, 317
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 21 2008

Keywords

Examples

			For k=18, 18/(3*(c(18)-r(18)))=6/(28-26)=3=a(1).
For k=78, 78/(3*(c(78)-r(78)))=26/(106-104)=13=a(2).
For k=99, 99/(3*(c(99)-r(99)))=33/(132-129)=11=a(3).
For k=102, 102/(3*(c(102)-r(102)))=34/(135-133)=17=a(4).
For k=174, 174/(3*(c(174)-r(174)))=58/(222-220)=29=a(5).
For k=186, 186/(3*(c(186)-r(186)))=62/(238-236)=31=a(6).
		

Crossrefs

Programs

  • Maple
    A141468 := proc(n) option remember ; if n = 1 then 0; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a) ; fi; od: fi; end: A002808 := proc(n) option remember ; A141468(n+2) ; end: for n from 1 to 3000 do p := n/(A002808(n)-A141468(n))/3 ; if type(p,'integer') then if isprime(p) then printf("%d,",p) ; fi; fi; od: # R. J. Mathar, Jan 23 2009
  • Mathematica
    A141468 [n_] := A141468[n] = If[n == 1, 0, For[a = A141468[n - 1] + 1, True, a++, If[!PrimeQ[a], Return[a]]]];
    A002808[n_] := A002808[n] = A141468[n + 2];
    Reap[For[n = 1, n <= 3000, n++, p = n/(A002808[n] - A141468[n])/3; If[PrimeQ[p], Sow[p]]]][[2, 1]] (* Jean-François Alcover, Aug 28 2020, after R. J. Mathar *)

Extensions

Corrected and extended by R. J. Mathar, Jan 23 2009
Edited by Robert Israel, Mar 15 2019
Showing 1-1 of 1 results.