This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161817 #20 Apr 16 2018 02:52:38 %S A161817 0,2,5,8,10,11,12,14,15,16,18,21,24,26,29,32,34,37,40,42,43,44,46,47, %T A161817 48,50,53,56,58,59,60,62,63,64,66,69,72,74,75,76,78,79,80,82,85,88,90, %U A161817 93,96,98,101,104,106,107,108,110,111,112,114,117,120,122,125,128,130,133,136,138,139,140,142,143,144 %N A161817 Positions n such that A010060(n) = A010060(n+5). %C A161817 Let A=Axxxxxx be any sequence. Denote by A^* the intersection of A and the union of sequences {4*A(n)+k}, k=-1,0,1,2. Then the present sequence is the union of A079523^* and A121539^*. %C A161817 Conjecture. In every sequence of numbers n such that A010060(n)=A010060(n+k) for fixed odd k, the odious (A000069) and evil (A001969) terms alternate. [_Vladimir Shevelev_, Jul 31 2009] %H A161817 G. C. Greubel, <a href="/A161817/b161817.txt">Table of n, a(n) for n = 1..10000</a> %H A161817 J.-P. Allouche, <a href="http://arxiv.org/abs/1401.3727">Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence</a>, arXiv:1401.3727 [math>NT], 2014. %H A161817 J.-P. Allouche, <a href="http://dx.doi.org/10.5802/jtnb.906">Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence</a>, J. de Théorie des Nombres de Bordeaux, 27, no. 2 (2015), 375-388. %H A161817 V. Shevelev, <a href="http://arXiv.org/abs/0907.0880">Equations of the form t(x+a)=t(x) and t(x+a)=1-t(x) for Thue-Morse sequence</a>, arXiv:0907.0880 [math.NT], 2009-2012. %t A161817 tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n - 1)/2]; Reap[For[n = 0, n <= 20000, n++, If[tm[n] == tm[n + 5], Sow[n]]]][[2, 1]] (* _G. C. Greubel_, Jan 05 2018 *) %o A161817 (PARI) is(n)=hammingweight(n+5)==Mod(hammingweight(n),2) \\ _Charles R Greathouse IV_, Mar 26 2013 %Y A161817 Cf. A161674, A161673, A161639, A161641, A161627, A161579, A161580, A121539, A131323, A036554, A010060, A079523, A081706. %K A161817 nonn,base,easy %O A161817 1,2 %A A161817 _Vladimir Shevelev_, Jun 20 2009