This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161824 #38 Apr 16 2023 21:44:40 %S A161824 0,1,2,3,6,7,8,9,12,13,16,17,18,19,22,23,24,25,26,27,30,31,32,33,34, %T A161824 35,38,39,40,41,44,45,48,49,50,51,54,55,56,57,60,61,64,65,66,67,70,71, %U A161824 72,73,76,77,80,81,82,83,86,87,88,89,90,91,94,95,96,97,98,99,102,103,104,105,108 %N A161824 Numbers such that A010060(n) = A010060(n+6). %C A161824 Let A=Axxxxxx be any sequence from OEIS. Denote by A^* the intersection of the union of sequences {2*A(n)+j}, j=0,1, and the union of sequences {4*A(n)+k}, k=-2,-1,0,1. Then the sequence is the union of (A079523)^* and (A121539)^*. %H A161824 G. C. Greubel, <a href="/A161824/b161824.txt">Table of n, a(n) for n = 1..10000</a> %H A161824 J.-P. Allouche, <a href="http://arxiv.org/abs/1401.3727">Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence</a>, arXiv:1401.3727 [math.NT], 2014. %H A161824 J.-P. Allouche, <a href="http://dx.doi.org/10.5802/jtnb.906">Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence</a>, J. de Théorie des Nombres de Bordeaux, 27, no. 2 (2015), 375-388. %H A161824 Vladimir Shevelev, <a href="http://arXiv.org/abs/0907.0880">Equations of the form t(x+a)=t(x) and t(x+a)=1-t(x) for Thue-Morse sequence</a>, arXiv:0907.0880 [math.NT], 2009-2012. %t A161824 tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n - 1)/2]; Reap[For[n = 0, n <= 6000, n++, If[tm[n] == tm[n + 6], Sow[n]]]][[2, 1]] (* _G. C. Greubel_, Jan 05 2018 *) %o A161824 (PARI) is(n)=hammingweight(n)%2==hammingweight(n+6)%2 \\ _Charles R Greathouse IV_, Aug 20 2013 %Y A161824 Cf. A161817, A161674, A161673, A161639, A161641, A161627, A161579, A161580, A121539, A131323, A036554, A010060, A079523, A081706. %K A161824 nonn,base %O A161824 1,3 %A A161824 _Vladimir Shevelev_, Jun 20 2009 %E A161824 Terms a(40) onwards added by _G. C. Greubel_, Jan 05 2018 %E A161824 Offset corrected by _Mohammed Yaseen_, Mar 29 2023