This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161857 #24 Aug 04 2025 17:37:35 %S A161857 1,2,3,3,5,4,7,4,7,4,11,4,13,4,11,5,17,12,19,-3,13,4,23,-4,21,4,15,3, %T A161857 29,38,31,6,17,4,31,-5,37,4,19,-42,41,76,43,15,27,4,47,-66,43,-4,23, %U A161857 21,53,68,43,34,25,4,59,-434,61,4,9,7,49,60,67,33,29,-54,71,24,73,4,59,39,69 %N A161857 a(n) is the sum of the first column of the difference table of the divisors of n. %C A161857 Let DTD(n) denote the difference table of the divisors of n. The sum of the first row of DTD(n) is sigma(n) = A000203(n). a(n) is the sum of the first column of DTD(n). - _Peter Luschny_, May 18 2016 %H A161857 Reinhard Zumkeller, <a href="/A161857/b161857.txt">Table of n, a(n) for n = 1..1000</a> %F A161857 a(n) = SUM(A161856(A006218(n-1)+i): 1<=i<=A000005(n)), n>1. %e A161857 The DTD of 65 is: %e A161857 [ 1 5 13 65] %e A161857 [ 4 8 52] %e A161857 [ 4 44] %e A161857 [ 40] %e A161857 sigma(65) = 1 + 5 + 13 + 65 = 84. %e A161857 a(65) = 1 + 4 + 4 + 40 = 49. %t A161857 a[n_] := Module[{dd = Divisors[n]}, If[n==1, 1, Sum[Differences[dd,k][[1]], {k, 0, Length[dd]-1}]]]; Array[a, 100] (* _Jean-François Alcover_, Jun 17 2019 *) %t A161857 Table[Total[Table[Differences[Divisors[k],n],{n,0,DivisorSigma[0,k]-1}][[;;,1]]],{k,80}] (* _Harvey P. Dale_, Aug 04 2025 *) %o A161857 (Sage) %o A161857 def A161857(n): %o A161857 D = divisors(n) %o A161857 T = matrix(ZZ, len(D)) %o A161857 for (m, d) in enumerate(D): %o A161857 T[0, m] = d %o A161857 for k in range(m-1, -1, -1) : %o A161857 T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k] %o A161857 return sum(T.column(0)) %o A161857 print([A161857(n) for n in range(1,78)]) # _Peter Luschny_, May 18 2016 %Y A161857 Row sums of A161856. %Y A161857 Cf. A000005, A000203, A006218. %K A161857 sign %O A161857 1,2 %A A161857 _Reinhard Zumkeller_, Jun 20 2009 %E A161857 New name from _Peter Luschny_, May 18 2016