This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161870 #33 Apr 13 2023 12:06:20 %S A161870 1,2,7,18,47,110,258,568,1237,2600,5380,10870,21652,42350,81778, %T A161870 155676,292964,544846,1003078,1828128,3301952,5911740,10499385, %U A161870 18502582,32371011,56240816,97073055,166497412,283870383,481212656,811287037,1360575284,2270274785,3769835178,6230705170,10251665550,16794445441 %N A161870 Convolution square of A000219. %C A161870 Equals [1,2,3,...] * [1,0,4,0,10,0,20,...] * [1,0,0,6,0,0,21,...] * [1,0,0,0,8,0,0,0,36,...] * ... - _Gary W. Adamson_, Jul 06 2009 %C A161870 Number of pairs of planar partitions of u and v where u + v = n. - _Joerg Arndt_, Apr 22 2014 %H A161870 Seiichi Manyama, <a href="/A161870/b161870.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Vaclav Kotesovec) %H A161870 Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 19. %H A161870 Paul Martin, Eric C. Rowell, and Fiona Torzewska, <a href="https://arxiv.org/abs/2301.13831">Classification of charge-conserving loop braid representations</a>, arXiv:2301.13831 [math.QA], 2023. %F A161870 G.f.: 1 / prod(k>=1, (1-x^k)^k )^2. - _Joerg Arndt_, Apr 22 2014 %F A161870 a(n) ~ Zeta(3)^(2/9) * exp(1/6 + 3*n^(2/3)*(Zeta(3)/2)^(1/3)) / (A^2 * 2^(1/18) * sqrt(3*Pi) * n^(13/18)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - _Vaclav Kotesovec_, Feb 27 2015 %F A161870 G.f.: exp(2*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - _Ilya Gutkovskiy_, May 29 2018 %p A161870 a:= proc(n) option remember; `if`(n=0, 1, 2*add( %p A161870 a(n-j)*numtheory[sigma][2](j), j=1..n)/n) %p A161870 end: %p A161870 seq(a(n), n=0..30); # _Alois P. Heinz_, Mar 12 2015 %t A161870 nn = 36; CoefficientList[Series[Product[1/(1 - x^i)^(2 i), {i, 1, nn}] , {x, 0, nn}], x] (* _Geoffrey Critzer_, Nov 29 2014 *) %o A161870 (PARI) N=66;x='x+O('x^N); Vec(1/prod(k=1,N,(1-x^k)^k)^2) \\ _Joerg Arndt_, Apr 22 2014 %Y A161870 Cf. A000219. %Y A161870 Column k=2 of A255961. %K A161870 nonn %O A161870 0,2 %A A161870 _Gary W. Adamson_, Jun 20 2009 %E A161870 Added more terms, _Joerg Arndt_, Apr 22 2014