This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161884 #28 Feb 16 2025 08:33:10 %S A161884 16,6,16,5,6,6,16,6,5,7,6,6,6,5,16,6,6,6,5,6,7,6,6,5,6,6,6,6,5,5,16,6, %T A161884 6,5,6,6,6,6,5,6,6,6,7,5,6,6,6,6,5,6,6,6,6,5,6,6,6,6,5,6,5,6,16,5,6,6, %U A161884 6,6,5,6,6,6,6,5,6,6,6,6,5,6,6,6,6,5,6 %N A161884 Smallest k such that n^4 = a_1^4+...+a_k^4 and all a_i are positive integers less than n. %C A161884 It follows from Balasubramanian, Deshouillers, & Dress' result g(4) = 19 that a(n) <= 20. Deshouillers, Hennecart, & Landreau and Deshouillers, Kawada, & Wooley together give an effective proof that G(4) = 16, from which it can be determined by checking the 96 exceptions that a(n) <= 17. Probably a(n) <= 16. [_Charles R Greathouse IV_, Jul 31 2011] %D A161884 J.-M. Deshouillers, K. Kawada, and T. D. Wooley, "On sums of sixteen biquadrates", Mem. Soc. Math. Fr. 100 (2005), 120 pp. %H A161884 Giovanni Resta, <a href="/A161884/b161884.txt">Table of n, a(n) for n = 2..250</a> %H A161884 R. Balasubramanian, J.-M. Deshouillers, and F. Dress, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k54952065/f13.image">Problème de Waring pour les bicarrés I</a>, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 303 (1986), pp. 85-88. %H A161884 R. Balasubramanian, J.-M. Deshouillers, and F. Dress, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k5495802k/f11.image">Problème de Waring pour les bicarrés II</a>, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 303 (1986), pp. 161-163. %H A161884 J.-M. Deshouillers, F. Hennecart and B. Landreau, <a href="http://www.math.ethz.ch/EMIS/journals/JTNB/2000-2/Dhl.ps">Waring's Problem for sixteen biquadrates - numerical results</a>, Journal de Théorie des Nombres de Bordeaux 12 (2000), pp. 411-422. %H A161884 Jean-Charles Meyrignac, <a href="http://euler.free.fr/">Computing minimal equal sums of like powers</a> %H A161884 Manfred Scheucher, <a href="/A161884/a161884.sage.txt">Sage Script</a> %H A161884 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/DiophantineEquation4thPowers.html">Diophantine Equation 4th Powers</a> %o A161884 (PARI) a(n, verbose=0, m=4)={N=n^m; for(k=3, 99, forvec(v=vector(k-1, i, [1, n\sqrtn((k+1-i)*0.99999, m)]), ispower(N-sum(i=1, k-1, v[i]^m), m, &K)&&K>0&&!if(verbose,print1("/*"n" "v"*/"))&&return(k), 1))} \\ _M. F. Hasler_, Dec 17 2014 %Y A161884 Cf. A161882, A161883, A161885, A099591. %K A161884 nonn %O A161884 2,1 %A A161884 _Dmitry Kamenetsky_, Jun 21 2009 %E A161884 a(51)-a(63) from _M. F. Hasler_, Dec 17 2014 %E A161884 a(64)-a(86) from _Giovanni Resta_, Aug 17 2015