This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161887 #9 Aug 20 2019 09:23:47 %S A161887 1,2,6,12,60,120,840,7560,15120,110880,166320,1441440,2882880, %T A161887 10810800,43243200,183783600,367567200,2793510720,6983776800, %U A161887 58663725120,117327450240,299836817280,2698531355520,7495920432000 %N A161887 A product of quotients of factorials. %C A161887 Definition: Let b(n,k) = floor(n/2^k)! and m = log[2](n) then c(n) = product_{k=1..m} b(n,k) / b(n,k+1)^2. %C A161887 a(n) is the sequence derived from c(n) by eliminating duplicates and sorting the values. %C A161887 a(1) through a(19) are highly composite numbers (A002182). %C A161887 The number of divisors of a(1) through a(28) are number of divisors of highly composite numbers (A002183). %C A161887 A055773(floor(n/2)) is a divisor of a(n), a(n)/A055773(floor(n/2)) after eliminating duplicates and sorting starts 1,4,24,216,1440,2160,.. %H A161887 Amiram Eldar, <a href="/A161887/b161887.txt">Table of n, a(n) for n = 1..1669</a> %p A161887 a := proc(n) local m,k; m := nops(convert(n,base,2)); %p A161887 mul(iquo(n,2^k)!/iquo(n,2^(k+1))!^2,k=1..m-1) end: %p A161887 seq(a(i),i=1..50): A:=sort(convert({%},list)); %t A161887 b[n_, k_] := Floor[n/2^k]!; c[n_] := Product[b[n, k]/b[n, k+1]^2, {k, 1, Log[2, n]}]; A = Array[c, 50] // DeleteDuplicates // Sort (* _Jean-François Alcover_, Jun 17 2019 *) %Y A161887 Cf. A002182, A002183. %K A161887 easy,nonn %O A161887 1,2 %A A161887 _Peter Luschny_, Jun 21 2009