This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161906 #34 Mar 08 2021 09:19:23 %S A161906 1,1,1,1,2,1,1,2,1,1,2,1,3,1,2,1,1,2,3,1,1,2,1,3,1,2,4,1,1,2,3,1,1,2, %T A161906 4,1,3,1,2,1,1,2,3,4,1,5,1,2,1,3,1,2,4,1,1,2,3,5,1,1,2,4,1,3,1,2,1,5, %U A161906 1,2,3,4,6,1,1,2,1,3,1,2,4,5,1,1,2,3,6,1,1,2,4,1,3,5,1,2,1,1,2,3 %N A161906 Triangle read by rows in which row n lists the divisors of n that are <= sqrt(n). %C A161906 If we define a divisor d|n to be inferior if d <= n/d, then inferior divisors are counted by A038548 and listed by this sequence. - _Gus Wiseman_, Mar 08 2021 %H A161906 Reinhard Zumkeller, <a href="/A161906/b161906.txt">Rows n = 1..1000 of triangle, flattened</a> %e A161906 Triangle begins: %e A161906 1....... 1; %e A161906 2....... 1; %e A161906 3....... 1; %e A161906 4..... 1,2; %e A161906 5....... 1; %e A161906 6..... 1,2; %e A161906 7....... 1; %e A161906 8..... 1,2; %e A161906 9..... 1,3; %e A161906 10..... 1,2; %e A161906 11....... 1; %e A161906 12... 1,2,3; %e A161906 13....... 1; %e A161906 14..... 1,2; %e A161906 15..... 1,3; %e A161906 16... 1,2,4; %t A161906 div[n_] := Select[Divisors[n], # <= Sqrt[n] &]; div /@ Range[48] // Flatten (* _Amiram Eldar_, Nov 13 2020 *) %o A161906 (Haskell) %o A161906 a161906 n k = a161906_tabf !! (n-1) !! (k-1) %o A161906 a161906_row n = a161906_tabf !! (n-1) %o A161906 a161906_tabf = zipWith (\m ds -> takeWhile ((<= m) . (^ 2)) ds) %o A161906 [1..] a027750_tabf' %o A161906 -- _Reinhard Zumkeller_, Jun 24 2015, Mar 08 2013 %o A161906 (PARI) row(n) = select(x->(x<=sqrt(n)), divisors(n)); \\ _Michel Marcus_, Nov 13 2020 %Y A161906 Initial terms are A000012. %Y A161906 Final terms are A033676. %Y A161906 Row lengths are A038548 (number of inferior divisors). %Y A161906 Row sums are A066839 (sum of inferior divisors). %Y A161906 The prime terms are counted by A063962. %Y A161906 The odd terms are counted by A069288. %Y A161906 Row products are A072499. %Y A161906 Row LCMs are A072504. %Y A161906 The superior version is A161908. %Y A161906 The squarefree terms are counted by A333749. %Y A161906 The prime-power terms are counted by A333750. %Y A161906 The strictly superior version is A341673. %Y A161906 The strictly inferior version is A341674. %Y A161906 A001221 counts prime divisors, with sum A001414. %Y A161906 A000005 counts divisors, listed by A027750 with sum A000203. %Y A161906 A056924 count strictly superior (or strictly inferior divisors). %Y A161906 A207375 lists central divisors. %Y A161906 - Inferior: A217581. %Y A161906 - Superior: A033677, A051283, A059172, A063538, A063539, A070038, A116882, A116883, A341591, A341592, A341593, A341675, A341676. %Y A161906 - Strictly Inferior: A060775, A070039, A333805, A333806, A341596, A341677. %Y A161906 - Strictly Superior: A048098, A064052, A140271, A238535, A341594, A341595, A341642, A341643, A341644, A341645, A341646. %Y A161906 Cf. A000196, A001055, A001248, A006530, A020639, A050320, A068101, A161901. %K A161906 easy,nonn,tabf %O A161906 1,5 %A A161906 _Omar E. Pol_, Jun 27 2009 %E A161906 More terms from _Sean A. Irvine_, Nov 29 2010