cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161936 The number of direct isometries that are derangements of the (n-1)-dimensional facets of an n-cube.

Original entry on oeis.org

0, 3, 14, 117, 1164, 13975, 195642, 3130281, 56345048, 1126900971, 24791821350, 595003712413, 15470096522724, 433162702636287, 12994881079088594, 415836194530835025, 14138430614048390832, 508983502105742069971, 19341373080018198658878, 773654923200727946355141
Offset: 1

Views

Author

Elizabeth McMahon, Gary Gordon (mcmahone(AT)lafayette.edu), Jun 29 2009

Keywords

Comments

a(n) plays the same role as A003221 plays for the derangement numbers A000166.

Examples

			For a square, the 3 rotations are direct edge derangements. For a 3-cube, the 6 edge-centered rotations and the 8 vertex-centered rotations are direct face derangements.
		

Crossrefs

Programs

Formula

a(n) = (b(n) + (-1)^n)/2, where b(n) is sequence A000354, i.e., the number of (n-1)-dimensional facet derangements of an n-cube.
From Peter Luschny, May 09 2017: (Start)
a(n) = (-1)^n*(1-n*hypergeom([1,1-n],[],2)).
a(n) = (2^n*Gamma(n+1,-1/2)/exp(1/2)+(-1)^n)/2. (End)

Extensions

More terms from Peter Luschny, May 09 2017