cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161952 Base-15 Armstrong or narcissistic numbers (written in base 10).

This page as a plain text file.
%I A161952 #29 Feb 16 2025 08:33:10
%S A161952 1,2,3,4,5,6,7,8,9,10,11,12,13,14,113,128,2755,3052,5059,49074,49089,
%T A161952 386862,413951,517902,15219156,18605333,38009273,40082196,40310423,
%U A161952 40868227,47527794,100128060,100128061,100128188,104189152,105464820
%N A161952 Base-15 Armstrong or narcissistic numbers (written in base 10).
%C A161952 Whenever 15|a(n) (n = 32, 36, 40, 86, 100, 135, 143, 194, 197, 201), then a(n+1) = a(n) + 1. Zero also satisfies the definition (n = Sum_{i=1..k} d[i]^k where d[1..k] are the base-15 digits of n), but this sequence only considers positive terms. - _M. F. Hasler_, Nov 22 2019
%H A161952 Joseph Myers, <a href="/A161952/b161952.txt">Table of n, a(n) for n = 1..202</a> (the full list of terms, from Winter)
%H A161952 Henk Koppelaar and Peyman Nasehpour, <a href="https://arxiv.org/abs/2008.08187">On Hardy's Apology Numbers</a>, arXiv:2008.08187 [math.NT], 2020.
%H A161952 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/NarcissisticNumber.html">Narcissistic Number</a>
%H A161952 D. T. Winter, <a href="http://ftp.cwi.nl/dik/Armstrong">Table of Armstrong Numbers</a>
%t A161952 Select[Range[10^7], # == Total[IntegerDigits[#, 15]^IntegerLength[#, 15]] &] (* _Michael De Vlieger_, Nov 04 2020 *)
%o A161952 (PARI) select( is_A161952(n)={n==vecsum([d^#n|d<-n=digits(n,15)])}, [1..10^5]) \\ _M. F. Hasler_, Nov 22 2019
%Y A161952 In other bases: A010344 (base 4), A010346 (base 5), A010348 (base 6), A010350 (base 7), A010354 (base 8), A010353 (base 9), A005188 (base 10), A161948 (base 11), A161949 (base 12), A161950 (base 13), A161951 (base 14), A161953 (base 16).
%K A161952 base,fini,full,nonn
%O A161952 1,2
%A A161952 _Joseph Myers_, Jun 22 2009
%E A161952 Terms sorted in increasing order by _Pontus von Brömssen_, Mar 03 2019