This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161969 #15 Feb 16 2025 08:33:10 %S A161969 1,8,20,0,-70,-64,56,0,-125,160,308,0,110,0,-520,0,57,-560,0,0,182, %T A161969 512,-880,0,1190,448,884,0,0,0,-1400,0,-1330,-1000,1820,0,-646,-1280, %U A161969 0,0,-1331,2464,380,0,1120,0,2576,0,0,880,1748,0,-3850,0,-3400,0,2703 %N A161969 Expansion of f(q)^8 in powers of q where f() is a Ramanujan theta function. %C A161969 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %H A161969 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a> %H A161969 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a> %F A161969 Expansion of q^(-1/3) * (eta(q^2)^3 / (eta(q) * eta(q^4)))^8 in powers of q. %F A161969 Euler transform of period 4 sequence [8, -16, 8, -8, ...]. %F A161969 G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 1296 (t/i)^4 f(t) where q = exp(2 Pi i t). %F A161969 a(n) = b(3*n + 1) where b() is multiplicative with b(3^e) = 0^e, b(2^e) = (1+(-1)^e)/2 * -(-8)^(e/2) if e>0, b(p^e) = (1+(-1)^e)/2 * (-p^3)^(e/2) if p == 5 (mod 6), b(p^e) = b(p) * b(p^(e-1)) - b(p^(e-2)) * p^3 if p == 1 (mod 6) where b(p) = (x^2-3*p) * x, 4*p = x^2 + 3 * y^2, |x| < |y| and x == 2 (mod 3). %F A161969 G.f.: Product_{k>0} (1 - (-x)^k)^8. %F A161969 a(n) = (-1)^n * A000731(n). %F A161969 a(4*n + 3) = a(16*n + 13) = 0. a(4*n + 1) = (-1)^n * 8 * a(n). %F A161969 a(2*n) = A153728(n). - _Michael Somos_, Sep 06 2015 %e A161969 G.f. = 1 + 8*x + 20*x^2 - 70*x^4 - 64*x^5 + 56*x^6 - 1258*x^8 + ... %e A161969 G.f. = q + 8*q^4 + 20*q^7 - 70*q^13 - 64*q^16 + 56*q^19 - 125*q^25 + 160*q^28 + ... %t A161969 a[ n_] := SeriesCoefficient[ QPochhammer[ -x]^8, {x, 0, n}]; (* _Michael Somos_, Sep 06 2015 *) %o A161969 (PARI) {a(n) = if( n<0, 0, polcoeff( eta(-x + x * O(x^n))^8, n))}; %o A161969 (PARI) {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, A = factor(3*n + 1); (-1)^n * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 0, p%3==2, if( e%2, 0, (-1)^(e/2) * p^(3*e/2)), forstep( y=sqrtint(4*p\3), sqrtint(p\3), -1, if( issquare( 4*p - 3*y^2, &x), if( x%3!=2, x=-x); break)); a0=1; a1 = y = x * (x^2 - 3*p); for( i=2, e, x = y*a1 - p^3*a0; a0=a1; a1=x); a1)))}; /* _Michael Somos_, Sep 06 2015 */ %o A161969 (Magma) A := Basis( CuspForms( Gamma0(36), 4), 170); A[1] + 8*A[4] + 20*A[7] - 70*A[12]; /* _Michael Somos_, Sep 02 2015 */ %Y A161969 Cf. A000731, A153728. %K A161969 sign %O A161969 0,2 %A A161969 _Michael Somos_, Jun 22 2009 %E A161969 Corrected by _Charles R Greathouse IV_, Sep 02 2009