cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161993 A006005 (shifted) convolved with all of its regularly "aerated" variants.

This page as a plain text file.
%I A161993 #24 Nov 20 2020 04:27:04
%S A161993 1,3,8,19,43,85,171,315,580,1022,1766,2982,4959,8081,12997,20596,
%T A161993 32261,49909,76447,115872,174133,259312,383206,561877,818225,1183266,
%U A161993 1700658,2429266,3450562,4874167,6850072,9578548,13331445,18469783,25478494,34999375,47887091
%N A161993 A006005 (shifted) convolved with all of its regularly "aerated" variants.
%C A161993 Refer to A161779 for the analogous sequence based on the factorials.
%C A161993 Given A006005 (1 together with the odd primes = odd noncomposite numbers) = a, then b = the aerated variant: (1, 0, 3, 0, 5, 0, 7,...); c = (1, 0, 0, 3, 0, 0, 5,...) and so on such that A161993 = the infinite convolution product: a*b*c*...
%H A161993 Vaclav Kotesovec, <a href="/A161993/b161993.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..5000 from Alois P. Heinz)
%p A161993 p:= n-> `if`(n=0, 1, ithprime(n+1)):
%p A161993 b:= proc(n, i) option remember; `if`(i>n, 0,
%p A161993      `if`(irem(n, i, 'r')=0, p(r), 0)+
%p A161993       add(p(j)*b(n-i*j, i+1), j=0..n/i))
%p A161993     end:
%p A161993 a:= n-> `if`(n=0, 1, b(n, 1)):
%p A161993 seq(a(n), n=0..45);  # _Alois P. Heinz_, Jul 27 2019
%t A161993 p[n_] := If[n==0, 1, Prime[n+1]];
%t A161993 b[n_, i_] := b[n, i] = If[i>n, 0, If[Mod[n, i]==0, p[n/i], 0] + Sum[p[j] b[n - i j, i+1], {j, 0, n/i}]];
%t A161993 a[n_] := If[n==0, 1, b[n, 1]];
%t A161993 a /@ Range[0, 45] (* _Jean-François Alcover_, Nov 20 2020, after _Alois P. Heinz_ *)
%Y A161993 Cf. A006005, A161779.
%K A161993 nonn
%O A161993 0,2
%A A161993 _Gary W. Adamson_, Jun 24 2009
%E A161993 Definition and comment corrected by _Omar E. Pol_, Aug 18 2011
%E A161993 Correct offset and a(13)-a(36) from _Alois P. Heinz_, Jul 27 2019