cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162006 Second left hand column of the EG1 triangle A162005.

This page as a plain text file.
%I A162006 #7 Jun 02 2025 01:45:06
%S A162006 1,28,1032,52736,3646208,330545664,38188155904,5488365862912,
%T A162006 961530104709120,201865242068910080,50052995352723193856,
%U A162006 14476381898608390176768,4831399425299156001882112
%N A162006 Second left hand column of the EG1 triangle A162005.
%F A162006 a(n) = sum((-1)^(m-p-1)*sum(2^(n-q-1)*binomial(n-q-1,m-p-1)*A094665(n-1,q)*A156919(q,p),q=1..n-m+p), p=0..m-1) with m = 2.
%p A162006 nmax := 14; mmax := nmax: imax := nmax: T1(0, x) := 1: T1(0, x+1) := 1: for i from 1 to imax do T1(i, x) := expand((2*x+1)*(x+1)*T1(i-1, x+1) - 2*x^2*T1(i-1, x)): dx := degree(T1(i, x)): for k from 0 to dx do c(k) := coeff(T1(i, x), x, k) od: T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1 = 0..dx): od: for i from 0 to imax do for j from 0 to i do A083061(i, j) := coeff(T1(i, x), x, j) od: od: for n from 0 to nmax do for k from 0 to n do A094665(n+1, k+1) := A083061(n, k) od: od: A094665(0, 0) := 1: for n from 1 to nmax do A094665(n, 0) := 0 od: for m from 1 to mmax do A156919(0, m) := 0 end do: for n from 0 to nmax do A156919(n, 0) := 2^n end do: for n from 1 to nmax do for m from 1 to mmax do A156919(n, m) := (2*m+2)*A156919(n-1, m) + (2*n-2*m+1) * A156919(n-1, m-1) end do end do: m:=2; for n from m to nmax do a(n, m) := sum((-1)^(m-p1-1)*sum(2^(n-q-1)*binomial(n-q-1, m-p1-1) * A094665(n-1, q) * A156919(q, p1), q=1..n-m+p1), p1=0..m-1) od: seq(a(n, m), n = m..nmax);
%p A162006 # Maple program edited by _Johannes W. Meijer_, Sep 25 2012
%Y A162006 Second left hand column of the EG1 triangle A162005.
%Y A162006 Other left hand columns are A000182 and A162007.
%Y A162006 Related to A094665, A083061 and A156919.
%Y A162006 A000079 and A036289 appear in the Maple program.
%K A162006 easy,nonn
%O A162006 2,2
%A A162006 _Johannes W. Meijer_, Jun 27 2009