cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162011 A sequence related to the recurrence relations of the right hand columns of the EG1 triangle A162005.

Original entry on oeis.org

1, -1, 1, -11, 19, -9, 1, -46, 663, -3748, 7711, -6606, 2025, 1, -130, 6501, -163160, 2236466, -17123340, 71497186, -154127320, 174334221, -98986050, 22325625, 1, -295, 36729, -2549775, 109746165, -3080128275, 57713313405, -727045264875
Offset: 1

Views

Author

Johannes W. Meijer, Jun 27 2009

Keywords

Comments

The recurrence relation RR(n) = 0 of the n-th right hand column can be found with RR(n) = expand( product((1-(2*k-1)^2*z)^(n-k+1),k=1..n),z) = 0 and replacing z^p by a(n-p).
The polynomials in the numerators of the generating functions GF(z) of the coefficients that precede the a(n), a(n-1), a(n-2) and a(n-3) sequences, see A000012, A006324, A162012 and A162013, are symmetrical. This phenomenon leads to the sequence [1, 1, 6, 1, 19, 492, 1218, 492, 19 , 9, 3631, 115138, 718465, 1282314, 718465, 115138, 3631, 9].

Examples

			The recurrence relations for the first few right hand columns:
n = 1: a(n) = 1*a(n-1)
n = 2: a(n) = 11*a(n-1)-19*a(n-2)+9*a(n-3)
n = 3: a(n) = 46*a(n-1)-663*a(n-2)+3748*a(n-3)-7711*a(n-4)+6606*a(n-5)-2025*a(n-6)
n = 4: a(n) = 130*a(n-1)-6501*a(n-2)+163160*a(n-3)-2236466*a(n-4)+17123340*a(n-5)-71497186*a(n-6)+154127320*a(n-7)-174334221*a(n-8)+98986050*a(n-9)-22325625*a(n-10)
		

Crossrefs

A000012, A004004 (2x), A162008, A162009 and A162010 are the first five right hand columns of EG1 triangle A162005.
A000124 (the Lazy Caterer's sequence) gives the number of terms of the RR(n).
A006324, A162012 and A162013 equal the absolute values of the coefficients that precede the a(n-1), a(n-2) and a(n-3) factors of the RR(n).

Programs

  • Maple
    nmax:=5; for n from 1 to nmax do RR(n) := expand(product((1-(2*k-1)^2*z)^(n-k+1), k=1..n), z) od: T:=1: for n from 1 to nmax do for m from 0 to(n)*(n+1)/2 do a(T):= coeff(RR(n), z, m): T:=T+1 od: od: seq(a(k), k=1..T-1);

Formula

RR(n) = expand( product((1-(2*k-1)^2*z)^(n-k+1),k=1..n),z) with n = 1, 2, 3, .. . The coefficients of these polynomials lead to the sequence given above.