cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162012 The sequence of the absolute values of the a(n-2) coefficients of A162011.

Original entry on oeis.org

0, 19, 663, 6501, 36729, 149842, 491274, 1375206, 3413982, 7710813, 16133689, 31690659, 59028879, 105082068, 179893252, 297641916, 477906924, 747198807, 1140797259, 1704931921, 2499346773, 3600290694, 5103978990, 7130572930
Offset: 1

Views

Author

Johannes W. Meijer, Jun 27 2009

Keywords

Crossrefs

Equals the absolute values of the coefficients that precede the a(n-2) factors of the recurrence relations RR(n) of A162011.
Cf. A006324 [a(n-1)] and A162013 [a(n-3)].

Programs

  • Maple
    nmax:=26; for n from 1 to nmax do RR(n) := expand(product((1-(2*k-1)^2*z)^(n-k+1),k=1..n),z) od: T:=1: for n from 1 to nmax do a(T):=coeff(RR(n),z,2): T:=T+1 od: seq(a(k),k=1..T-1);

Formula

a(n) = (20*n^8+80*n^7+4*n^6-268*n^5-155*n^4+230*n^3+131*n^2-42*n)/360
Recurrence relation sum((-1)^k*binomial(9,k)*a(n-k), k= 0 .. 9) = 0
GF(z) = z*(19+492*z+1218*z^2+492*z^3+19*z^4)/(1-z)^9