This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162022 #16 Aug 01 2024 01:30:04 %S A162022 3,3,3,5,3,3,5,3,3,7,3,5,3,3,5,3,3,7,3,5,3,7,3,5,3,3,3,5,3,7,11,3,5,3, %T A162022 7,3,3,11,5,3,3,5,3,7,3,13,3,5,3,3,5,11,3,3,3,7,5,3,11,3,5,7,3,13,3,3, %U A162022 5,3,3,5,13,3,11,3,7,3,5,3,3,5,3,3,7,17,3,5,3,13,7,3,5,3,3,11,3,17,5,3,7,3 %N A162022 Smallest prime factor of n-th odd composite integers A071904. %C A162022 Records are for n's such that A071904(n) = squares of primes. %C A162022 a(n) = A020639(A071904(n)). [_Reinhard Zumkeller_, Oct 10 2011] %H A162022 Reinhard Zumkeller, <a href="/A162022/b162022.txt">Table of n, a(n) for n = 1..10000</a> %e A162022 A071904(1)=9, hence a(1)=3, A071904(4)=25, hence a(4)=5. %t A162022 nn=501;With[{ci=Complement[Range[9,nn,2],Prime[Range[PrimePi[nn]]]]}, FactorInteger[ #][[1,1]]&/@ci] (* _Harvey P. Dale_, Nov 30 2012 *) %o A162022 (Python) %o A162022 from sympy import primepi, primefactors %o A162022 def A162022(n): %o A162022 if n == 1: return 3 %o A162022 m, k = n, primepi(n) + n + (n>>1) %o A162022 while m != k: %o A162022 m, k = k, primepi(k) + n + (k>>1) %o A162022 return min(primefactors(m)) # _Chai Wah Wu_, Jul 31 2024 %Y A162022 Cf. A014076, A071904. %K A162022 nonn %O A162022 1,1 %A A162022 _Zak Seidov_, Jun 25 2009 %E A162022 Corrected example a(4)=5 Francesco Antoni (francesco_antoni(AT)yahoo.com), Aug 04 2010