This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162143 #31 Apr 14 2025 05:39:40 %S A162143 900,1764,4356,4900,6084,10404,11025,12100,12996,16900,19044,23716, %T A162143 27225,28900,30276,33124,34596,36100,38025,49284,52900,53361,56644, %U A162143 60516,65025,66564,70756,74529,79524,81225,81796,84100,96100,101124,103684,119025,125316,127449 %N A162143 Numbers that are the squares of the product of three distinct primes. %C A162143 Numbers that are the product of exactly 3 distinct squares of primes (p^2*q^2*r^2). %H A162143 T. D. Noe, <a href="/A162143/b162143.txt">Table of n, a(n) for n = 1..1000</a> %H A162143 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a> %F A162143 a(n) = A007304(n)^2. %F A162143 A050326(a(n)) = 8. - _Reinhard Zumkeller_, May 03 2013 %F A162143 Sum_{n>=1} 1/a(n) = (P(2)^3 + 2*P(6) - 3*P(2)*P(4))/6 = (A085548^3 + 2*A085966 - 3*A085548*A085964)/6 = 0.0036962441..., where P is the prime zeta function. - _Amiram Eldar_, Oct 30 2020 %e A162143 900 = 2^2*3^2*5^2, 1764 = 2^2*3^2*7^2, 4356 = 2^2*3^2*11^2, .. %p A162143 h := proc(n) local P; P := NumberTheory:-PrimeFactors(n); nops(P) = 3 and n = mul(P) end: %p A162143 A162143List := upto -> seq(n^2, n=select(h, [seq(1..upto)])): # _Peter Luschny_, Apr 14 2025 %t A162143 fQ[n_]:=Last/@FactorInteger[n]=={2,2,2}; Select[Range[100000], f] %o A162143 (Python) %o A162143 from math import isqrt %o A162143 from sympy import primepi, primerange, integer_nthroot %o A162143 def A162143(n): %o A162143 def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1))) %o A162143 def bisection(f,kmin=0,kmax=1): %o A162143 while f(kmax) > kmax: kmax <<= 1 %o A162143 while kmax-kmin > 1: %o A162143 kmid = kmax+kmin>>1 %o A162143 if f(kmid) <= kmid: %o A162143 kmax = kmid %o A162143 else: %o A162143 kmin = kmid %o A162143 return kmax %o A162143 return bisection(f)**2 # _Chai Wah Wu_, Aug 29 2024 %o A162143 (SageMath) %o A162143 def is_a(n): %o A162143 P = prime_divisors(n) %o A162143 return len(P) == 3 and prod(P) == n %o A162143 print([n*n for n in range(1, 439) if is_a(n)]) # _Peter Luschny_, Apr 14 2025 %Y A162143 Cf. A007304, A006881, A050326, A162142, A085548, A085964, A085966. %K A162143 nonn %O A162143 1,1 %A A162143 _Vladimir Joseph Stephan Orlovsky_, Jun 25 2009 %E A162143 Edited by _N. J. A. Sloane_, Jun 27 2009