cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162143 Numbers that are the squares of the product of three distinct primes.

This page as a plain text file.
%I A162143 #31 Apr 14 2025 05:39:40
%S A162143 900,1764,4356,4900,6084,10404,11025,12100,12996,16900,19044,23716,
%T A162143 27225,28900,30276,33124,34596,36100,38025,49284,52900,53361,56644,
%U A162143 60516,65025,66564,70756,74529,79524,81225,81796,84100,96100,101124,103684,119025,125316,127449
%N A162143 Numbers that are the squares of the product of three distinct primes.
%C A162143 Numbers that are the product of exactly 3 distinct squares of primes (p^2*q^2*r^2).
%H A162143 T. D. Noe, <a href="/A162143/b162143.txt">Table of n, a(n) for n = 1..1000</a>
%H A162143 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a>
%F A162143 a(n) = A007304(n)^2.
%F A162143 A050326(a(n)) = 8. - _Reinhard Zumkeller_, May 03 2013
%F A162143 Sum_{n>=1} 1/a(n) = (P(2)^3 + 2*P(6) - 3*P(2)*P(4))/6 = (A085548^3 + 2*A085966 - 3*A085548*A085964)/6 = 0.0036962441..., where P is the prime zeta function. - _Amiram Eldar_, Oct 30 2020
%e A162143 900 = 2^2*3^2*5^2, 1764 = 2^2*3^2*7^2, 4356 = 2^2*3^2*11^2, ..
%p A162143 h := proc(n) local P; P := NumberTheory:-PrimeFactors(n); nops(P) = 3 and n = mul(P) end:
%p A162143 A162143List := upto -> seq(n^2, n=select(h, [seq(1..upto)])):  # _Peter Luschny_, Apr 14 2025
%t A162143 fQ[n_]:=Last/@FactorInteger[n]=={2,2,2}; Select[Range[100000], f]
%o A162143 (Python)
%o A162143 from math import isqrt
%o A162143 from sympy import primepi, primerange, integer_nthroot
%o A162143 def A162143(n):
%o A162143     def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1)))
%o A162143     def bisection(f,kmin=0,kmax=1):
%o A162143         while f(kmax) > kmax: kmax <<= 1
%o A162143         while kmax-kmin > 1:
%o A162143             kmid = kmax+kmin>>1
%o A162143             if f(kmid) <= kmid:
%o A162143                 kmax = kmid
%o A162143             else:
%o A162143                 kmin = kmid
%o A162143         return kmax
%o A162143     return bisection(f)**2 # _Chai Wah Wu_, Aug 29 2024
%o A162143 (SageMath)
%o A162143 def is_a(n):
%o A162143     P = prime_divisors(n)
%o A162143     return len(P) == 3 and prod(P) == n
%o A162143 print([n*n for n in range(1, 439) if is_a(n)]) # _Peter Luschny_, Apr 14 2025
%Y A162143 Cf. A007304, A006881, A050326, A162142, A085548, A085964, A085966.
%K A162143 nonn
%O A162143 1,1
%A A162143 _Vladimir Joseph Stephan Orlovsky_, Jun 25 2009
%E A162143 Edited by _N. J. A. Sloane_, Jun 27 2009