A162153 Differences between the sum of consecutive composites and the prime that precedes them.
1, 1, 20, 1, 32, 1, 44, 107, 1, 139, 80, 1, 92, 203, 227, 1, 259, 140, 1, 307, 164, 347, 562, 200, 1, 212, 1, 224, 1447, 260, 539, 1, 1157, 1, 619, 643, 332, 683, 707, 1, 1493, 1, 392, 1, 2056, 2176, 452, 1, 464, 947, 1, 1973, 1019, 1043, 1067, 1, 1099, 560, 1, 2309
Offset: 1
Keywords
Examples
a(1) = 4-3 = 1; a(2) = 6-5 = 1; a(3) = (8+9+10)-7 = 20; a(4) = 12-11 = 1; a(5) = (14+15+16)-13 = 32; a(6) = 18-17 = 1; a(7) = (20+21+22)-19 = 44; a(8) = (24+25+26+27+28)-23 = 107; etc.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
Primes:= select(isprime,[2,seq(i,i=3..1000,2)]): seq((Primes[i+1]^2-Primes[i+1]-Primes[i]^2-3*Primes[i])/2, i=2..nops(Primes)-1); # Robert Israel, Jul 18 2018
Formula
a(n) = (prime(n+2)^2 - prime(n+1)^2 - prime(n+2) - 3*prime(n+1))/2. - Robert Israel, Jul 19 2018
Extensions
Edited and corrected by Robert Israel, Jul 18 2018